# Connecting Gas to Star Formation

Robert Kennicutt *University of Cambridge* with Neal Evans *UT Austin* 













**CALIFA Survey** 



# "I still don't understand the interplay between HI, H<sub>2</sub> (as traced by CO), and star formation." M. Haynes

- The path from accretion to star formation involves several steps, with "critical path" dictated by the most difficult physical hurdle.
  - formation of a neutral ISM (cooling, thermal instabilities)
    - easy for disks, difficult for massive spheroids
    - dictated by gas density and ambient UV radiation field (internal and external)
  - formation of bound interstellar clouds (Jeans/gravitational instabilities)
    - dictated by gas density and galactic shear, tidal field
  - formation of a cool neutral phase (thermal/pressure instabilities)
    - dictated by ISM pressure and temperature
  - formation of molecular gas (phase instability)
    - dictated by cloud opacity (photodissociating UV) and ambient UV field
  - formation of bound molecular cloud cores
    - dictated by Jeans, fragmentation, turbulence, competitive accretion...
  - formation of stars, planets
    - complicated(!)
- Of all of these processes only the latter appear to be deterministic in present-day galaxies. Which of the other processes is "critical" is a subject of debate, and this may change in different environments, cosmic epochs

# Outline

- Current state of knowledge of star formation law
  - integrated star formation law in galaxies
  - spatially-resolved SF law in galaxies
  - clues from SF in the Milky Way
- Insights, Questions, and challenges





HERACLES CO 2-1 survey (IRAM)



#### Obs. and Data Reduction in Progress

- CARMA: 10 completed + 3 half done.
- Nobeyama 45m telescope: 17 observed



by Misty La Vigne; Fumi Egusa; Rieko Momose; Masahiro Fukuhara; Guilin Liu; Jin Koda



Nobeyama CO survey of M33

#### Multiwavelength observations provide dust-free SFR tracers









Kennicutt et al. 2009



### Integrated scaling laws circa 1998 - 2006



Kennicutt 1998



 $\Sigma_{\rm H_2}/\Sigma_{\rm HI} \sim {\rm Pressure}$ 



Gao, Solomon 2004

Blitz, Rosolowsky 2006

### Integrated Schmidt Law - Normal Spirals

- larger sample, higher dynamic range
- individual dust corrections
- individual [NII] corrections
- Hα-defined disk radii





### Extension to Low Surface Brightness Galaxies



Wyder et al. 2009, ApJ, 696, 1834



![](_page_11_Figure_1.jpeg)

# Corrections to X(CO) in dwarfs removes most of discrepant behaviour in SFR/M<sub>gas</sub>, but not in SFR/M<sub>H2</sub>

![](_page_12_Figure_1.jpeg)

Leroy et al 2011 - *also see* Genzel et al 2012

Schruba et al 2012

### Evidence for low X(CO) in ULIRGs, dense starbursts

![](_page_13_Figure_1.jpeg)

Tacconi et al 2008

## Is the Schmidt law bimodal?

![](_page_14_Figure_1.jpeg)

Genzel et al. 2010

![](_page_15_Figure_1.jpeg)

#### Daddi et al 2010

### A continuously varying X(CO) produces a steeper Schmidt law

![](_page_16_Figure_1.jpeg)

Narayanan et al 2012

## Spatially-Resolved Measurements of the SF Law

![](_page_17_Figure_1.jpeg)

![](_page_18_Picture_0.jpeg)

![](_page_18_Figure_1.jpeg)

Martin & Kennicutt 2001

![](_page_18_Figure_3.jpeg)

Bigiel et al 2008 (THINGS)

### HI component uncorrelated with local SFR (defines low-density threshold regime)

![](_page_19_Figure_1.jpeg)

### Schmidt law regime dominated by molecular gas

![](_page_20_Figure_1.jpeg)

Bigiel et al. 2011

Schruba et al 2011

# Very Near: Clouds in Solar Neighborhood

### Spitzer Programs

c2d + Gould Belt: 20 nearby molecular clouds (blue circles)

Cluster Project: 35 young stellar clusters (red circles)

90% of known stellar groups and clusters *within 1 kpc* (complete to ~ 0.1 M<sub>Sun</sub>)

![](_page_21_Figure_5.jpeg)

# Star Formation is Very Localized

![](_page_22_Figure_1.jpeg)

Gray is extinction, red dots are YSOs, contours of volume density (blue is  $1.0 M_{sun} pc^{-3}$ ; yellow is 25  $M_{sun} pc^{-3}$ )

Heiderman et al. 2010

### SF efficiency in clouds varies over orders of magnitude, but within dense clumps is nearly constant

![](_page_23_Figure_1.jpeg)

- Combined evidence <u>suggests</u> a simple picture:
  - the fundamental star-forming unit is the dense molecular clump, with a near-universal SFE within clumps everywhere
  - key regulators of SFR are formation rate of molecular clouds (pressure?)
    - <u>and</u> the fraction of molecular mass in dense cores
- Main features in SF law on kpc scales driven by
  - first threshold for forming molecular gas
  - second threshold where global  $\Sigma_{\rm gas}$  approaches critical density for forming molecular clumps

### But it can't be that simple...

- the starburst phenomenon itself implies a highly non-linear SF regime
- global molecular "SF efficiencies" vary over 100x in galaxies

![](_page_25_Figure_3.jpeg)

![](_page_25_Figure_4.jpeg)

## Two Possible Ways to Reconcile

invoke a third SF regime...

![](_page_26_Figure_2.jpeg)

thresholds from UV shielding, not gravity

... or invoke bimodality

![](_page_26_Figure_5.jpeg)

Krumholz et al. 2009

### Or maybe we need to look again at the observations: Is the molecular SFE constant?

- some studies report a non-linear molecular Schmidt law

![](_page_27_Figure_2.jpeg)

Momose 2012, PhD thesis, U Tokyo

# Why so difficult?

- the path from observed emissivities to SFR

- observed L(H $\alpha$ )  $\rightarrow$  dust-corrected L(H $\alpha$ )
  - assume dust radiative transfer model
- corrected L(H $\alpha$ )  $\rightarrow$  ionisation rate
  - assume ionisation bounded nebulae/galaxy, dust absorption
- ionisation rate  $\rightarrow L_{\text{bol}}$  of OB stars
  - assume well populated IMF, M<sub>upper</sub>, trustworthy stellar models
- $L_{bol}$  of OB stars  $\rightarrow$  mass of massive stars
  - trust stellar models some more, including ages
- mass of massive stars  $\rightarrow$  total mass of stars
  - assume IMF
- mass of young stars at this moment  $\rightarrow$  SFR
  - assume smooth SF history

Most of these assumptions are (relatively!) secure for galaxies with SFR > 0.01  $M_{o}$ /yr, uncertainties larger (~2x) for luminous starbursts

## The Challenge: Spatially-Resolved SFRs

- the robustness of galaxy-wide SFRs rests several approximations:
  - averaged over full range of region ages
  - IMF is fully populated, well represented
  - dust geometry effects average out
  - SFR averaged over a galaxy roughly steady with time, so age sensitivity of tracers (H $\alpha$ , UV, IR) can be ignored
- extending this approach to a "SFR map" uncovers several systematic effects:
  - local emission dependent on small number statistics of individual stars, "cosmic variance" (especially for Hα, other ionised gas tracers)
  - variations in dust geometry add scatter to "SFRs"
  - age of stellar population varies locally, altering  $H\alpha/UV/IR$  emission per unit SFR
  - $H\alpha$  and dust emission trace gas, not stars
  - diffuse emission produces false "star formation" signal far away from any young stars
  - meaning of "SFR" itself ill defined on local scales

![](_page_29_Picture_13.jpeg)

# A Case Study in "Cosmic Variance": Orion

![](_page_30_Picture_1.jpeg)

- L(H $\alpha$ ) underestimates SFR of Orion complex by 20x
- L(IR) underestimates SFR by 8x

![](_page_30_Figure_4.jpeg)

![](_page_31_Picture_0.jpeg)

#### How faithfully do tracers follow distribution of young stars?

![](_page_32_Figure_1.jpeg)

Lucke-Hodge OB associations

![](_page_32_Picture_3.jpeg)

![](_page_32_Picture_4.jpeg)

![](_page_32_Picture_5.jpeg)

![](_page_32_Picture_6.jpeg)

Herschel Far-IR/Submm

![](_page_32_Picture_8.jpeg)

### Contamination by diffuse emission

![](_page_33_Picture_1.jpeg)

 Difficult problem that requires masking out of clustered regions of star formation (HII regions/clusters) and separate diffuse SF-associated PAH emission associated from non-SF diffuse PAH emission
(Crocker et al 2012, Leroy et al 2012)

![](_page_34_Picture_0.jpeg)

# Lessons Learned and Challenges Ahead

### Key astrophysical questions

- constancy of  $\Sigma_{\rm sfr}/\Sigma_{\rm mol}$ : is there a second threshold in the starburst regime?
- bimodality in the SF law?
- roles of molecular/atomic vs cold phase, gravitational thresholds?
- is the molecular clump/core as a fundamental SF unit?
  - is there a universal SF efficiency in clumps?
- Uncertainties in key diagnostics are (still) a limiting factor
  - X(CO), especially at extremes of metallicity, SFR, and  $P_{ISM}$
  - SFRs on a spatially-resolved basis and in the low-density regime
    - these problems are tractable with ALMA, IFUs, multi- $\lambda$  data
    - don't forget the IMF ...
- Much key physics lies at the interface between galactic-scale and local (intra-cloud) scales
  - Relevant scales extend from 1 pc (clumps) to >1 kpc (pressure, gravitational/hydrodynamical disturbances...)
  - fertile ground for observations, theory, simulations