A UV/X-ray Census of Compact Groups of Galaxies: Chandra and Swift

Panayiotis Tzanavaris NPP Fellow

Collaborators:

A. Hornschemeier (GSFC), S. C. Gallagher (UWO), K. E. Johnson (UVA),

C. Gronwall (Penn State), W.N. Brandt (Penn State), J. C. Charlton (Penn

State)

Union College July 9, 2012

Galaxies live together!

CGs are a special category of poor groups where most galaxies are in the nearby Universe

Hickson 1982:

- $\Delta mag_{max} = 3$ for ≥ 4 galaxies
- **μ** < 26
- empty annulus

100 HCGs

Hickson 1997 ARAA: "...small, relatively isolated systems of typically four or five galaxies in close proximity to one another"

Compact groups are highly interacting!

Environment galaxies within a few radii of each other low σ (100's km/s) high n_{gal} (10⁸ / Mpc²) short t_{cross} (1/10 × Hubble time)

Multiple interactions

How does this affect AGN and SF activity?

Rapid Transformations in CG environment SSFR bimodality

Tzanavaris et al 2010 ApJ Gallagher et al 2008 ApJ Johnson et al 2007 ApJ No Luminous AGN in the CG Environment; optical – HI results

Optical AGN classification:

- Martínez et al. 2010 280 galaxies, 64 HCGs:
 23% AGN but low Ha luminosity
- Coziol et al 2004, 1998 67 CG galaxies, AGN low luminosity and preferentially found in E/S0s
 Lack of AGN fuel: CGs HI deficient as a class (Verdes-Montenegro et al 2001)

Measuring AGN and SF activity in HCG nuclei

Explore properties of CGs using diagnostics complementary to those used so far

- X-ray regime: powerful tools for AGN and SF activity
 - Higher contrast between nuclear BH and surrounding galaxy
 - Optical:

- Dilution by starlight
- obscuration
- Iuminous AGN identified if $L_{\chi} > 10^{42}$ erg/s
 - SF: LMXBs (E-types) HMXBs (L-types)

Quantitative nuclear AGN and SF diagnostics

 X-ray loudness = X-ray – to "optical" spectral index = α_{OX} = 0.380 log (L_{v, 2 keV} / L_{v, 2600 Å}) Tananbaum et al 1979
 SSFR = (SFR_{UV} + SFR_{IR}) / M_{*}
 Swift UVOT, *Spitzer* MIPS, 2MASS *Ks* optical AGN – SF classification: Martínez et al. 2010
 BPT (1981) diagrams, Veilleux & Osterbrock (1987), Kauffmann et al (2003), Kewley et al (2001)

X-ray/UV flux ratio correlates with L_{UV} for strong AGN

Steffen et al 2006 Eracleous et al 2010

X-ray/UV flux ratio correlates with L_{UV} for strong AGN

Tzanavaris et al 2012 (in prep)

AGN activity anticorrelates with SSFR

Most HCG nuclei have *low* X-ray luminosities SF and LLAGN dominate

Summary of Results

Main result: No strong AGN in CGs *

* except when they *are* strong!

 α_{OX} discriminates SF – AGN:

- α_{OX} more +ve \equiv less SF close to correlation \equiv earlier types and less H I
- α_{OX} more -ve \equiv more SF away from correlation \equiv later types and more H I

 L_x does *not* discriminate as strongly : LLAGN – SF

Stay tuned! 380 ks *Swift* UVOT data – PI Tzanavaris