The Gas Content of Galaxies in Groups and Clusters: A Simulation Perspective

Greg Bryan (Columbia University)

What sets the color and gas content of galaxies?

Gas Content: Environmental Effects

- Ram pressure stripping of cold, dense gas
- Suppressing accretion ("starvation")
- □ Tidal stripping, harassment, mergers
- Cooling of hot gas/AGN heating

Gas Content: Environmental Effects

Ram pressure stripping of cold, dense gas

- Suppressing accretion ("starvation")
- **Tidal stripping**, harassment, mergers
- Cooling of hot gas/AGN heating

Clusters contain hot gas

Credit: X-ray: NASA/CXC/MIT/E.-H Peng et al; Optical: NASA/ STScl

Cosmological cluster evolution

5 Mpc

Gas density

Tonnesen & GB (2009)

Environmental effects: Gas stripping, tidal effects

Gas

stars

Tonnesen & GB (2009)

Cosmological simulation: gas loss

Which galaxies lose gas?

Distance from cluster center

Ram pressure stripping

Piontek et al (2003)

Analytic-Numerical Comparisons

Analytic prescription for stripping:

$$\rho_{ICM} v_{ICM}^2 = P_{ram} > f_{grav} = 2\pi G \Sigma_* \Sigma_{gas}$$
(Gunn & Gott 1972)

- Can be used to predict radius at which stripping occurs
- When compared to simulations, this works remarkably well
 Readiger & Hensler (2004)

Roediger & Hensler (2005)

(also Vollmer 2001 with sticky-particle sims)

RPS: Comparison to Observations

- Predicted amount of mass loss (HI deficiency) and stripping radius (relative to optical)
- Vollmer et al (2001)

Ram pressure stripping

Roediger et al (2008)

Stripped tails

Osterloo & van Gorkom (2005)

Roediger et al (2006)

RPS: Impact of Radiative Cooling

Cooling

No cooling

Tonnesen & GB

(2009)

Impact of Radiative Cooling

Radiative cooling produces a very different looking tail, but the mass of gas stripped still agrees with the Gunn and Gott prescription

RPS: Impact of Magnetic Field

Ruszkowski et al (2012)

Star Formation in Stripped Tail

Hester et al (2008)

distribution of newly formed stars

Kapferer et al (2008)

Observing stripped tails in X-ray

What controls the X-ray brightness of tails?

What about groups?

- **Ram** pressure: $P = \rho v^2$
 - **cluster velocity:** $v \sim M^{1/3}$
- RPS more important for clusters than groups
 - also more important for low mass galaxies (dwarfs) for a given cluster size
- But we see environmental effects in groups: why?

Gas Content: Environmental Effects

Ram pressure stripping of cold, dense gas

Suppressing accretion ("starvation")

Tidal stripping, harassment, mergers

Cooling of hot gas/AGN heating

Simulating halo gas stripping

V=500 km/s T= 10^7 K (M_{cl}= 10^{14} M_{sun}) M_d= $6*10^{10}$ M_{sun},v_c=220 km/s,B/D=0.2 (Bekki 2009) (also McCarthy et al 2008)

Halo stripping: analytic prescription

McCarthy et al (2008) simulated halo stripping and found that a simple extension of the Gunn-Gott Prescription worked well.

$$P_{\rm ram} \equiv
ho_{
m gas,p} v_{
m sat}^2 > P_{
m grav} \equiv lpha_{
m rp} rac{GM_{
m tot,sat}(r)
ho_{
m gas,sat}(r)}{r}$$

Starvation implemented in semianalytic model

Impact of Delayed Starvation

Font et al (2008)

What does gas accretion actually look like?

Keres et al 2005, 2009

Simulating Gas Accretion

HI Map

Joung et al (2012)

LOG HI Column Density (cm⁻ⁱ

14	16	18	20	22

At z~0 inflowing gas is warm and ionized

- □ inflow rate ~ 4 M_☉/yr
- gas is warm-hot
- inflowing gas is mostly ionized (~10 % neutral in center)

Filamentary accretion of ionized gas

Map of Radial Mass Flux

Joung et al (2012)

Starvation in a Cosmological Simulation

Gas

Tonnesen & GB (2009)

Cosmological simulation

Distance from cluster center: 0-1 Mpc

1-2.4 Mpc 2.4 - 5 Mpc

Gas Content: Environmental Effects

Ram pressure stripping of cold, dense gas

Suppressing accretion ("starvation")

Tidal stripping, harassment, mergers

Cooling of hot gas/AGN heating

Impact of Cluster Potential

Byrd and Valtonen (1990) P = $(M_c/M_g)(r_g/r_c)^{-3} = 0.1$

Disk galaxy in a group environment

Disk and gas tidally stripped when:

mean density inside orbit = mean density inside disk

DM halo stripped well before disk

Villalobos et al (2012)

Tidal Effects on merger gas

- Generally mergers in clusters are rare (more common in clusters)
- Martig & Bournaud (2009) modeled galaxy-galaxy merger inside a cluster/ group potential, finding that it could enhance star formation over simple merger.

Galaxy merger within a cluster

Martig & Bournaud (2009)

Tidal stripping of halo gas?

McCarthy et al (2008) found that ram pressure stripping of a galaxy's hot halo was always more effective than tidal stripping

McCarthy et al (2008)

Galaxy-galaxy encounters (Harassment) can transform disks

Mastropietro et al (2004)

Gas Content: Environmental Effects

Ram pressure stripping of cold, dense gas

- Suppressing accretion ("starvation")
- **Tidal stripping**, harassment, mergers

Cooling of hot gas/AGN heating

Cooling of hot gas in Clusters

Evidence of cooling and star formation in Cool core clusters

Perseus – credit: NASA/ESA

Static cluster gas is NOT thermally unstable

Cluster gas is a temperature and density such that it would be thermally unstable if in a uniform medium

BUT, in a stratified medium, it is not (locally) thermally unstable (Balbus & Soker 1989)

Focus on central 16 kpc of cluster

However it is globally unstable! (but gas only cools out in very center)

AGN Feedback can suppress cooling

An AGN jet that is triggered when gas cools can limit cooling (if parameters well chosen)

But no filaments?

Gaspari et al (2012)

If the gas is heated uniformly, it can be thermally unstable

McCourt et al (2012)

If highly resolved, jet heating also can result in thermal instabilities

Density slices (~ 10 pc resolution)

t = 1 Myr

t = 100 Myr

Summary

- Ram pressure stripping of cold, dense gas
 Suppressing accretion ("starvation")
 Tidal stripping, harassment, mergers
- Cooling of hot gas/AGN heating