"Galaxy transformation in the SuperGroup environment of Abell 1882"

Aparajita Sengupta¹, William Keel¹, Glenn Morrison² University of Alabama¹, CFHT²

Union College, July 8-11, 2012

Evolution Of Galaxies in SuperCluster Environment

Evolution Of Galaxies in Cluster Environment

Evolution: Comparison Of Galaxy Evolution In Cluster and SuperGroup Environments

SuperGroup Abell 1882:

The central 27' x 20' (4x3 Mpc) region of A1882 in a CFHT MegaCam g-band image overlaid with the red contours representing the adaptively smoothed XMM data. Green circles represent part of 279 spectroscopic member galaxies of Abell 1882.

SuperGroup Abell 1882:

Filaments Determined By Friends-of-Friends Algorithm

Huchra and Gellar, 1982

Filaments Determined By Friends-of-Friends Algorithm

Determining The Local Galaxy Density:

Data

Photometric Data:

- 1) Canada France Hawaii Telescope
- 2) SDSS Photometric Survey (Archive)
- 3) 0.9-m SARA-North at Kitt Peak (Southeastern Association for Research in Astronomy Consortium)

Spectroscopic Data:

- 1) SDSS Archive
- 2) Upcoming: 6.5m Multiple Mirror Telescope at Mt. Hopkins
- <u>UV (135 280 nm)</u>

GALEX Archive

<u>24µm</u>

Spitzer

Sample Selection

Parameters	Range
Redshift	$0.13258 \le z \le 0.1576$
Velocity Dispersion	≈1180 km/s
r-Magnitude (M _r)	$-23.98 \le M_r \le -19.1$
Local Galaxy Density (Σ)	6.33×10 ⁻⁵ < Σ < 6×10 ⁻² Galaxies/ Mpc ²
Mass (in units of Solar Mass)	$10^8 \mathrm{M}_{\odot} \leq \mathrm{M} \leq 10^{11} \mathrm{M}_{\odot}$

Tracing Bimodality Of The Galaxies

Color-Derived Mass Plots:

Color-Density Relation

Where does the change in trend of color occur in the structure?

Color-Radial Distance Relation

Morphology-Density Relation

Where does the change in trend of color occur in the structure?

Density Evolution Of Birth Rate Parameter (β)

Density Evolution of Specific Star Formation(FUV+24 µm)

Density Evolution of Specific Star Formation(Hα+24 μm)

Specific Star formation Rate

- galaxies: Too far out from the SuperGroups
- 2. Change in sSFR and SFH (over past 300 Mys): Mainly due to Late type spirals with asymmetric stellar disks
 - Unlikely to be caused by Ram-pressure
- 3. High Velocity dispersion: Possibly not mergers
- 4. We propose: High speed pass-bys \rightarrow Harassment \rightarrow Strangulation

11	12	13	14	15
J141505.55-002344	J141338.32-001453.4	J141503.58-002826.7	J141448.19-002723	J141457.85-001730.4
16	17	18	19	20
J141506.52-002614.8	J141458.98-002314.4	J141516.33-001904.6	J141531.25-002038.8	J141449.8-002619.6
21	22	23	24	25
J141421.43-004005.3	J141419.21-003952.9	J141500.48-001137.5	J141406.17-003316.7	J141409.13-000912.6

