
Programmable Remote Wake-Up Alarm

Ian Mowers
ECE499 – Electrical/Computer Engineering Capstone Project 3

Supervisor: Cherrice Traver

3/17/2016

1

R EPORT S UMMARY

In this project, we are aiming to solve the issue of loud alarm clocks, which can cause

problems for people who share rooms with others. To design and implement a solution, we

consider previous technology that could aid us, such as past alarm clocks and newer headsets.

We also examine the issues of developing the solution, as well as component restrictions.

Manufacturing the final product, health, and societal impact are prime concerns. A goal for the

initial prototype is for it to be compact and wearable, thus we need to ensure that the user's health

is not adversely affected. These issues and constraints determine our requirements for the final

design. Options for implementing the final product are also examined and compared on a basis of

functionality and cost. The final design is a simple two part system, which consists of a

smartphone running Android OS that signals a hearing-aid style receiver to vibrate. The vibration

from the receiver will be enough to wake the user whilst not waking any others. It is intended to

work within the perimeters of a typical bedroom (approximately 20 feet per wall), and be

comfortable such that the user can sleep undisturbed. During the prototyping stage, the receiver

was built into two separate circuits using different types of microcontrollers: an Arduino-based

and PIC-based circuit. The two prototypes were then tested with a developed smartphone

application. Only the Arduino circuit worked, while the PIC microcontroller had programming

difficulties. In this implementation, the user can set the alarm using their smartphone running

Android with Bluetooth capabilities and the receiver will vibrate a small motor.

2

Table of Contents

Report Summary 2

Table of Contents 3

Index of Figures and Tables 4

Introduction 5

Background 7

Design Requirements 10

Design Alternatives 16

Preliminary Proposed Design 19

Final Design and Implementation 23

Performance Estimates And Results 32

Production Schedule 35

Cost Analysis 37

User’s Manual 38

Discussion, Conclusions and Recommendations 40

References 42

Appendix 43

3

Index of Figures and Tables

Figure 1: Artists' depiction of alarm clock problem 5

Figure 2: Basic block diagram of solution to problem 6

Figure 3: Graphic overview of functional decomposition 15

Figure 4: JY-MCU HC-06 Bluetooth transceiver picture 21

Figure 5: Arduino UNO R3 picture 21

Figure 6: Illustration of basic receiver design 22

Figure 7: Image of Vibration Motor used in circuits 23

Figure 8: Schematic of implemented Arudino-based circuit 24

Figure 9: Concept image of PIC used in circuit 25

Figure 10: Schematic of implemented PIC-based circuit 27

Figure 11: Image of PIC circuit on performance board 27

Figure 12: TimePicker on screen 30

Figure 13: Bluetooth device list 30

Figure 14: Logic flow of smartphone application operation process 32

Figure 15: Main menu for smartphone application 39

Figure 16: Screen image of alarm time with system clock 39

Table 1: Defined Behaviors and Constraints 10

Table 2: Approaches for Signaling Device, Advantages and Disadvantages 11-12

Table 3: Approaches for Receiver, Constraint Comparison 13-14

Table 4: Final Decisions on Design Requirements 16

Table 5: Main Parts for Prototyping Stage 22

Table 6: Estimated and Actual Measurements of the Arduino Circuit 33

Table 7: Range Trials for Arduino Circuit 34

Table 8: Cost Comparison Between Implemented Circuits 37

4

I NTRODUCTION

The impetus of this project stemmed from an issue that some people face in their

everyday life: waking up to a loud alarm clock. At first this would seem to be a trivial issue, as

some need such alarm clocks to wake up, but this is not always the case for people sharing

bedrooms. Some people may use an alarm clock to wake up early in the morning, but get up

before it goes off, fearing that they will wake those sleeping. Another example is sharing a room

in a university dorm. Some college students could be heavy sleepers and need a loud alarm to be

woken up. When roommates run on different schedules, early wake-up times can result in a

situation where others are woken up earlier than needed or expected. These situations can be

extended to roommates in apartments, couples sharing beds, and so on. Based upon personal

experience, this issue is important enough that it should be solved.

To alleviate this problem, the goal of this project is to design a lightweight and portable

receiver that will wake users in a quieter manner than before. The intended structure of the

5

Figure 1: Artist's depiction of problem. Note the frustration in
the other person .

receiver in the final product is based off of hearing-aids, but will incorporate other materials and

components to ensure comfort and feasibility of uninterrupted sleep. A separate signaling device

– in the case of this project, a smartphone – will signal to the receiver using ubiquitous

communication technologies available, while the system works within a typical size bedroom. It

will also have an interface that allows the user to see the time, be able to set the alarm, and view

any other important information regarding the system process. Basically, the device takes an

input, the alarm time, then outputs a signal to the receiver on the user's ear. The receiver will

receive a signal from a remote device, activate, and then wake the user.

This report is divided into several sections, ranging from Background to the Preliminary

Design, that intend to clarify and further define the design of this project. The first section, the

Background, will introduce the inventions and devices related to the problem and goal of this

project, while also detailing the major issues concerning implementation, especially ethical

issues and similar solutions currently in development. This will be followed by the Design

Requirements, laying out the specifications and criteria for the project solution, including

functions. Design Alternatives considers the possible options for implementing the project

functions, supported by research conducted to examine various constraints. All of the

requirements, reasoning and research culminated in the Preliminary Proposed Design, which

6

Figure 2: Basic and simple diagram of problem solution

was further tweaked and implemented as described in the Final Design and Implementation

section. The testing stage for the implementation and its results are presented in Performance

Estimates and Results, followed by the Production Schedule that describes the timeline of

developing and producing the problem solution. Cost Analysis then tabulates how much the

implementation would cost. The User’s Manual section will then explain how a potential user

would operate the system. The report is finally concluded by the Discussion, Conclusion and

Recommendations, which will discuss the successes and failures of the project and suggest

directions in which to fix and develop the project in the future.

B ACKGROUND

The earliest concept of alarm clocks probably stemmed from old large clocks, either in

houses or on the public square, that would ring bells or make other noises to indicate a new hour

in the day. This eventually evolved into smaller, personal clocks, where users could manually set

the alarm time by moving the hands to indicate time. Alarm clocks in the present day are mostly

digital, but this technology still relies on a physical clock within the device, as well as an alarm

where the user has little control over the sound volume. Common digital alarm clocks have at

most one or two buzzer settings, compared to white noise machines which have many more

settings. An inherent problem with cheaper digital clocks is that after extensive use while being

powered on, they begin to slowly gain time. One example is a digital clock used by the project

author, after about 2-3 months the clock has gained about 4 minutes. This issue is easy to fix by

resetting the clock, but these alarm clocks should be quiet and consistent. Utilizing smartphones

could be the most precise measurement of time, and thus behave as our clock for the project.

Since the advent of cellphones and the Bluetooth standard [1], various “hands-free”

devices have been developed and released on the market, functioning as mobile headsets without

7

the wires. Bluetooth also extends into data distribution, when pushing data from one device onto

another. This project involves a wireless receiver using both of these Bluetooth features,

although other alternatives are explored, such as RFID. Initial inspiration for the project concept

also came from hearing-aid design, which has existed for several decades. The conceptual

aspects of both the on-ear hearing-aid and remote hands-free headset combine to form top-level

design of the wireless receiver.

Devices similar to the design of this project are currently limited in number, though

approximately a year or so before the writing of this report, Kyungmi Moon in South Korea

designed something similar currently in development, the “Earlarm”[2]. The intended product is

a three-sectional system, where one sets the alarm on a separate device with their smartphone,

which then sends a signal to a pair of ear-plugs that will wake user. While similar in design to

this project, the focus is more on encapsulating the activation process within just the receiver and

smartphone, without functioning as an earplug like the “Earlarm”.

There are three major issues that will need to be addressed when determining the

constraints and designing the project: manufacturing, health concerns, and the social impact.

One of the goals of this project is compactness, but this may not be readily available during the

design and prototyping process. Prototyping with regular and familiar circuit components would

definitely ease the process, these components are not small. We also cannot just modify hearing-

aids and current wireless headsets since they are rigid structures and would be considered

product tampering. However, we can be confident that this project will come to fruition in the

future using those products as a conceptual foundation. During the prototyping stage we want to

ensure that the concept works, and once we confirm that it does, we can then focus on reducing

the overall size.

Another issue is safety regarding the use of the receiver. Since this will be a device that

8

the user puts on their body and has close contact with the ear, health is a big concern. Using both

wireless transmission standards and circuitry leads to concern over electrical shock and radiation

from signals. Any problems that could affect the user’s ear, such as blocking the ear canal or

physical damage, will be a factor in determining whether the receiver needs to be in the ear or

outside the ear, and how the device will be powered. We also want the receiver to be small, so it

must be low-powered.

This project may have a social impact if it can be manufactured en masse and has a

market release, but the impact would not be large. A small benefit to the use of the project would

be that end users would have easier times waking up, and maybe not affect others' sleep. One

detrimental aspect is that the final product might not work for those who need loud noises to

wake them up, but this could be field tested during the prototyping process.

In terms of ethical issues, the intent of this project is to replace a tool with a better tool,

replacing alarm clocks, only to wake people. When thinking of a problem to solve, another goal

was to ensure that the final product would benefit as many lives as possible, and could have other

applications beyond the scope of this project. Since it will use Bluetooth or other wireless

standards on smartphone, the receiver may not be an entirely secure device and would pose an

issue if hacked. It would appear that the effects of this project does not result in any serious

ethical issues towards society, a positive aspect. Bluetooth and wireless standards can be used

used in many negative ways, e.g. stealing of sensitive information as well as disrupting

communication between important systems.

All of the major issues concerning the project will be further addressed when we discuss

the constraints in the Design Requirements section. Overall, the main idea behind the project

arose from old alarm clocks, the noise and time-keeping problems with current ones, and

combining the technology with hearing-aids and wireless headsets. There may be problems with

9

manufacturing the device, as well as health concerns, but we will discuss these further in the next

section.

D ESIGN R EQUIREMENTS

The project's behavior initially was split amongst the signaling device and the receiver as

seen in Table 1, but as the design process continued the behavior of communication became a

separate entity while some desired behaviors were no longer a goal. Some implementation

choices were also considered when determining the final design criteria.

Table 1: Defined Behaviors and Constraints

Part Behavior Constraints To Consider

Signal Device

Signaling Signal Standards, Availability

Time Tracking Designing a separate time system, Cost

Power Need to design power source, Cost

Settings Physical design of device, Circuit design

Receiver

Receiving Linking with signal device, Health concerns

Vibration Circuit design, Power

Power Sourcing power, Cost

Recharge-ability* Cost, Effectiveness, Longevity

Power Indication* Circuit design, physical design

Physical Design* Health concerns*, Power, Recharge-ability*

The intended behavior of the system is spread out into two parts, a signaling device that

can transmit signals and the receiver that receives these signals. Although both parts have some

shared behavioral aspects, the receiver was initially planned to be a rechargeable device that

stays on or in the ear while you sleep, while the alarm would be set with the signaling device.

When the alarm goes off, a signal would be sent from the signal device to the ear attachment. In

this first design, one desired feature was to have the entire receiver itself vibrate, but other ways

to use vibration were examined and decided upon later. The alarm should shut off automatically

10

to preserve power and ease useability. Recharge-ability, another beneficial feature, would have

depended on the power requirements for the ear device, with the power dependent on the

signaling method. As the focus of this project shifted to ensuring the concept was feasible,

recharge-ability was demoted to being a periphery feature and would most likely not be

implemented in the prototype.

Potential end users or customers for this system are people who share bedrooms that wish

to have their wake-up routine not wake others. End-users in this kind of situation are most likely

to be those who share apartments, sleep in the same bed, or college roommates. Other potential

users could be those who simply would prefer a quieter, less abrupt way to wake. The end result

will ensure that only those who use the device will wake up.

Earlier in the design process, there were a few design approaches examined and some

choices researched in order to determine some of the design criteria. Their advantages and

disadvantages were compared to choose final criteria, resulting in some design approaches and

several choices to be discarded. These are all presented in Table 2, comparing between all

possible approaches considered for each behavior. Choices at this stage were then further

researched upon as options along with newly considered ones, the process detailed in the Design

Alternatives section.

Table 2: Approaches for Signaling Device, Advantages and Disadvantages

Behavior Design Approach Choices Advantages Disadvantages

Signaling
To Alarm
Device

Smartphone App
RFID / Other Direct from phone Range, Standards

Phone Signal
Use phone's signal

directly
Unsure about

protocols, Legality?

Custom-Made
Design

Transmitter
System specifically

for receiver

Learn how to build it,
complex circuit,

standards

Time
Tracking

Smartphone App Phone's Clock Atomic/Satellite Access to clock
difficult?

11

Alarm Clock
App

Existing software
Differing OS,

Redundant

Custom-Made Physical System -
Learn how to build

accurate clocks,
power issue

Power

Smartphone App Phone Power No separate power Relies on phone

Custom-Made Built-in Own power supply
Need to construct

separate source, time
consuming

Settings

Smartphone App -

Construct software
to maintain settings,

easy to add new
features

Need to function
properly

Custom-Made -
Simple button based

interface

Very limited and fixed
design, choices will

affect outer shell

Overall

Smartphone App -
Smartphones nearly

ubiquitous

Need to learn
programming for OS,

beholden to phone
power, range, security

Custom-Made -
Separate

controllable,
portable device

Construction,
Maintenance,

Precision

For the signaling device, two approaches were explored for implementing behavior, as

laid out and compared in Table 2. These were to either create a smartphone application, using the

smartphone as the power and transmitter, or design and construct a custom-made receiver that

would keep track of time.

For communication, there were two choices considered on the smartphone: utilizing

RFID or other wireless capabilities; or using the phone signal, such as the GSM/CSMA bands.

Instead using the smartphone hardware, a custom-built transmitter would select certain band

frequencies, and could work specifically with a custom-built receiver. Considering the overall

advantages and disadvantages, a currently existing RFID/Wireless system is the simplest, most

cost-effective and easiest choice to implement out of the two, but it could have range issues and

12

require understanding of specific transmission protocols. Time tracking would also constrain the

overall design. With a smartphone, we can use the phone's own clock, which is synchronized to

satellites and other atomic clocks. This is the most precise method of keeping track of time,

compared to a custom-made clock system that requires understanding construction of digital

clocks, which are prone to error to those unskilled. Power for transmission comes from the

smartphone itself, while a separate system would require a transformer to draw power from

electrical outlets. All the settings would also be controlled by software on a smartphone, thus

giving the ability to add more features easily. Putting the settings on the separate, possibly

molded transmission device would be affected by the circuit design, as well as limiting addition

of future features.

Overall, smartphones have become ubiquitous at the time of this project's development,

but creating a software application requires some programming on smartphone operating systems

and features are restricted to the phone's specifications. For a custom-made transmitter, a

separate device could be built that would then have its own specific capabilities and features, but

designing all the specifications and ensuring precision would also be required – a strenuous

process.

Table 3: Approaches for Receiver, Constraint Comparison

Behavior Design Style Implementation Constraints

Receiving Signal
Hearing-Aid Placed on bottom Size of receiver, Health hazards

Mesh Earplug
Receiver on end of

plug, like a chip
Health hazards

Vibration
Hearing-Aid Vibrator piece in ear Comfort, Health

Mesh Earplug Whole plug vibrates Design, Comfort, Health

Power
Hearing-Aid Button Batteries Battery types, Cost

Mesh Earplug Button Batteries Battery types, Design, Cost

13

Recharge-ability
(Replacement)*

Hearing-Aid Compartment Inserting and removing batteries

Mesh Earplug Compartment Same as above, more problematic

Power Indicator*
Hearing-Aid LED Light Design, Manufacturing

Mesh Earplug LED Light Design, Comfort, Manufacturing

Physical Design
Hearing-Aid Around Ear Health, Comfort

Mesh Earplug In-Ear Mesh Health, Comfort, Functionality

Two design styles were considered for the receiver: a hearing-aid based design and a

mesh earplug. Aside from circuit housing and the location of vibration, most of the

implementation choices were the same: power limited to button batteries and indication being

relegated to small LED lights. Since the receiver will be an ear device, a lot of decision-making

was influenced by health, design, and comfort.

Cost was primarily affected by power constraints. On Amazon (an online market that can

sell products from many third-party suppliers) in the spring of 2015, a set of 60 single-use

batteries for hearing-aids were about $15-25, while the lifespan was less than a week. On the

other hand, rechargeables were much more expensive, where a two-pack of typical rechargeable

hearing-aid size batteries were priced the same as the 60-pack for single-use. The one advantage

with the rechargeables was that the lifespan on average is about a year, the average charge cycle

typically 12-18 hours, depending on size. These types of batteries require a charger, maybe one

using magnetism similar to recharging stations for hearing-aid batteries.

The primary health concern regarding the receiver is where the parts of the device would

be placed. Putting the vibrator inside the ear, similar to the in-ear portion of a hearing aid, will

cause wax buildup in the ear over time and lead to ear infections. Instead, placing the vibrator on

the outside would vibrate the skull. This method also works as the human skull can pick up

14

vibrations that then travel to the eardrum. Utilizing this physiological feature allows the user to

leave their ear canal open, avoiding infections and having to frequently clean the device.

Now that all the constraints are determined and we are close to picking certain design

approaches, the project behavior can be rearranged into functions. The functions can be grouped

into three main sections: the transmitter, the communication, and the receiver. The transmitter,

implemented through a smartphone, will contain the software application and keep track of time,

functioning as the alarm settings. Communication through a one-directional system, where either

the smartphone sends signals to the receiver. Doing this simplfied the behavior of our receiver

and eases any possible programming that would be required. The receiver has the most functions:

receiving signal, power control (such as a sleep mode), enable (turning the device on and off),

and vibration. The standard for receiving the signal will be the same as the communication, while

power and enabling are needed to activate the vibration. Overall, this decomposition of functions

will work in tandem with our final design criteria.

For the final design requirements, the signal device will be any smartphone model, while

the software will be programmed for either iOS or Andriod operating systems (the two major

ones). Utilization of wireless capabilities will simplify the process for designing the receiver. The

receiver's build will be based on hearing-aids, but not exactly due to health concerns. Instead of

15

Figure 3: Graphic overview of functional decomposition of project. The smartphone behaves as
the transmitter, sending the signal. Receiver gets signal, activates, and vibrates accordingly.

having an in-ear portion of the device, the receiver will go around the ear, with a battery hatch at

one end. The exact location of the vibrator is still unknown, but it will be part of the receiver.

Lastly, recharge-ability and power indication are periphery features and no longer part of the

main goals of the prototyping stage. Together with these goals and constraints, our primary

requirements are: this device works in a 20x20 feet room; is quiet enough to avoid waking non-

users; is loud enough in vibration to wake the user, and is wireless.

Table 4: Final Decisions on Design Requirements

System Section Decision

Transmitter
Smartphone: design an application for either iOS and Andriod devices,
while using into the built-in communication technology. Will be much
easier to make.

Communication One-directional signals shared between the transmitter and receiver.

Receiver
Hearing-aid style device: Around ear, with battery compartment. Vibrator
location and position still unknown. Range no more than 20 feet.

D ESIGN A LTERNATIVES

After determining the design specifications, options for implementing the design

specifications were researched. These however are not final and were changed during the Final

Design and Implementation process. Based on the functions, options were then compared, just

like Design Requirements, by their advantages and disadvantages, as well as their specifications

and cost. Options were researched for four functions: communication, circuit power, vibration,

and software. Only these were chosen because the other requirements were automatically met by

selecting the smartphone as the transmitter.

Software and Communication would directly affect each other, so hardware and

programming were considered when selecting options. For software, it was initially determined

that either Android or iOS operating systems would be used. Applications could be easy to

program for both systems using “PhoneGap”, a program that builds versions of applications for

16

other operating systems, and thus the device would be ready for most of market. The only

problem would be hardware compatibility issues. Though most Android-based smartphones and

iPhones share similar hardware, their wireless capabilities would be limited by each other’s

differences. Android OS has open-source coding, community support, and many built-in classes,

especially for Bluetooth devices. Furthermore, everything can be programmed in Java, which the

project author has past experience. The iPhone operating system, iOS, is already widespread due

to high sales and a relatively huge customer base. Even with these benefits though, both

operating systems have their disadvantages. The project author would still need to learn how to

program for either operating system. Android OS appears to be the better and cost-effective

choice, as iOS built-in libraries are proprietary and Apple (the creators and maintainers of iOS)

has strict application release policies.

For communications standards and technologies, we looked at four different options for

implementation: Smartphone Hardware, Wi-Fi, RFID, and Bluetooth. Using the cellular signal of

the phone was immediately rejected in the early stages of the decision process; although an

interesting use of hardware, it is very specific to the smartphone models selected and probably

would be illegal to tamper with. Wi-Fi could have been a good option because of its ubiquity

throughout all communication devices, but since it is a rigid and complex IEEE standard with a

lack of small-build, ready-to-use components on the market, this was not further explored. RFID

and Bluetooth were both thoroughly researched as potential options, both with great benefits and

difficulties. RFID can be used with readers that scan up to 25 meters, satisfying our range

requirements, and the technology is already built in to some smartphones. Similarly, Bluetooth is

available on practically all current smartphones, while it is easy to buy transceiver modules for

circuits. But, the structural and compositional differences between these two options is

significant. Bluetooth receivers vary depending on which components you buy and must adhere

17

to certain “profiles”, or specific device usage, of the standard. RFID comes in either a sizable

two or three part system (scanners, transmitters and tags), is not as cheap as Bluetooth, and

would be using the technology in a manner that deviates from its original purpose. Some

smartphones come with NFC (Near Field Communications) technology that implements RFID,

but this is not long-range and would require attaching an RFID scanner and transmitter on to the

smartphone. In terms of cost, an entire custom-built RFID system could cost anywhere from $50-

$100 upward (including all parts), while simple Bluetooth transceivers for circuits can cost $5-15

dollars at a minimum. Out of all of these options, Bluetooth is the most cost-effective with

readily available components and allows for a simpler communication system.

There are not many ways to power the receiver due to its small size, so the primary focus

was to use button batteries. Since feasibility is also a priority for prototyping, other battery types

were considered and researched in the process. Button batteries, specifically for hearing-aids, are

manufactured into four main types: 10, 13, 312 and 675; all of them having similar voltages, but

typically near 1.5 volts[3]. These types researched are all zinc air batteries that are disposable,

once the pull tab is removed, they activate and only last about week depending on the hearing-

aid[3]. The benefits with these batteries is hat they are small and compact, but they are low

voltage and rechargeable ones are expensive. Another, slightly larger option investigated were

coin cell batteries, mainly lithium and silver oxide-based ones. Coin cell batteries can vary

depending on the type of manufacturer, but these typically carry a voltage of 3 volts with an

amp-hour rating of 200-250mAh, bought in various sizes[4][5]. They are small and inexpensive,

similar to button batteries, but they require specific holders, as would any of these batteries. One

more type looked at were AA batteries, thought to be slim, common and cheap. Usually 1.2-1.6

volts depending on the material, though lithium-ion ones carry twice as much. Their current

ratings are at least three times as much (>600mAh) as the coin cell batteries, but they are too

18

large for the project and are only useful for the prototyping stage.

The last portion of the system is the vibration, of which only two options were explored:

mechanical actuators and piezobuzzers. Mechanical motors were initially sought after, since they

create motion and vibration in a compact shell, but ones of decent quality turned out to be

expensive and initially not suitable to the project by design. This leaves the piezeobuzzers, which

create a buzzing noise that changes in volume depending on the voltage. These buzzers come

from various manufacturers and can be bought cheaply on online marketplaces (like Amazon), or

in mass orders through direct sources (like American Piezo [6]). They also are constructed with

leads or pins for attaching to a circuit. To generate the buzzing noise, these buzzers use a square

wave that causes a metal disk inside to expand and contract, and thus a wave generator is the

only crucial requirement.

Overall, out of the four main functions of which options were explored, possibilities were

compared and whittled down to one for prototyping: Android OS for the software; Bluetooth for

signaling; coin cell batteries for power; and using piezobuzzers for vibration. Some of the

reasoning behind these decisions is further detailed in the next section, but they are not final.

P RELIMINARY P ROPOSED D ESIGN

The main design proposal is divided in several portions, similar to the functions from the

Design Requirements/Alternatives sections earlier in the report, the first and important being the

software that will interface with the user. Since the transmitter will be part of a smartphone, one

out of several operating systems was selected as a base for the application. Android OS was

chosen due to some of its major advantages: open sourcing which allows ease of programming,

community support, and available packages. Programs for the operating system are all written in

an extended version of Java, which will be easier for the project author to adapt. The operating

19

system also comes with several Bluetooth APIs (programming interfaces), that will aid with the

communication aspect of the project. Since Android comes with various Alarm related classes,

used to set alarms for any smartphone, most of the software will use these as a base with some

modifications, such as interaction with one of the Bluetooth APIs and periphery settings for the

receiver.

All communication will be carried out through the Bluetooth wireless standard, due to its

versatility and wide availability on smartphones. When searching for transceiver modules,

Bluetooth modules were easy to find, their low cost further swaying the decision. The transceiver

that will be used for prototyping is an Arduino-based wireless Bluetooth transceiver. Called the

JY-MCU, it is an HC-06 transceiver and is hard-wired to link with other Bluetooth devices. HC-

06 type modules are always set to “slave mode” and therefore cannot be programmed to

communicate with other devices on their own. Since this transceiver is designed to work with

Arduino micro-processing boards, we will use a test circuit to determine its logical behavior.

Constructing a simple LED switch circuit, we can connect an Android smartphone to an Arduino

UNO board, sending out a “1” or “0” through BlueTerm, a Bluetooth emulation software for the

operating system[7]. While the circuit is running, the sending and receiving wires will be

connected to the LogicPort, a logic analyzer manufactured by Intronix[8]. This analyzer will

allow us to examine the signals being transferred from the transceiver to the circuit board. Once

testing is complete, we may choose to design a logic circuit where the transceiver can send

signals to the piezobuzzer without the need of the Arduino board. The total cost of this portion of

the receiver could be less than $10 to manufacture.

20

Since the Bluetooth transceiver requires 3.6 to 6 volts to operate, the circuit will be

powered by two 3-volt coin batteries, particularly the CR2032. These batteries will be wired to

the circuit using a holder with leading wires and will be able to power the transceiver, the logic

circuit and piezobuzzers. The piezobuzzers that will be used in the circuit can handle anywhere

from 3 volts to 24 volts, thus the current power for the prototype is sufficient and the low voltage

will create noise that is quiet enough. The buzzer will also be connected to a switch that will

enable power, either activated manually or by the logical circuit.

21

Figure 4: JY-MCU HC-06 Bluetooth transceiver to be used in the project. RXD and TXD are the
receiving and sending pins, GND and VCC for power.

Figure 5: Arduino UNO R3, to be used in
the testing phase

Table 5: Main Parts for Prototyping Stage

Part Name Function Reasoning

Sony Xperia Z3 Smartphone / Transmitter
Project author's personal

smartphone, Android-based

JY-MCU HC-06 Bluetooth
Transceiver for Arduino

Receiver / Communication
Popular transceiver for

connecting Android devices

Arduino UNO R3
Microcontroller

Logic / Testing
Used only for the testing phase

to determine logic and
behavior of transceiver

CR2032
Coin Cell Silver Oxide Battery

Power
Two will provide sufficient

voltage to circuit

Generic Piezobuzzers (3-24V) Vibration
Simple buzzers for the

prototyping stage, can handle
wide range of voltages

With all the parts together, the receiver for the preliminary design was intended to consist

of a Bluetooth transceiver, a logical circuit designed to activate the buzzer, all of which will be

powered by two coin cell batteries. For transmission, an application will be designed utilizing

various built-in classes with one of the Bluetooth APIs. Users will be able to set the alarm

through this application, and once the alarm goes off, the smartphone will send a signal to the

receiver. Assuming the software is given out for free with the product, the total cost of the

transmitter and receiver should be limited to the receiver, about $10-$20.

22

Figure 6: Illustration of basic receiver design: signal is received, the
transceiver communicates with the logic circuit, activating the buzzer. All
three powered by battery.

F INAL D ESIGN AND I MPLEMENTATION

Before implementing the design, quite a few changes were made based upon component

behavior, usability of these components, and remaining time in the production schedule. Instead

of attempting to analyze the behavior of the Arduino’s transmit and receive pins, the focus was

shifted to using a smaller microcontroller while also creating a circuit that uses the Arduino

UNO. Thus, there would be two versions of the same circuit, one to test the concept of the

receiver system, and another acting as a smaller prototype. During testing, the piezobuzzers

bought proved to be too loud for our noise requirements, beeping instead of buzzing. These were

then replaced with a small vibration motor [9], shown in Figure 7, cheaper than mechanical

actuators and functioned as desired, but raised a concern with circuit power that needed to be

resolved. All other parts slated for the prototyping stage from the preliminary design were kept,

such as the Bluetooth transceiver, while other basic circuit components were added to ensure

proper current flow.

The Arduino circuit is a modified version of our LED switch circuit from the testing

phase of our preliminary design, incorporating the new vibration motor and batteries. The

Bluetooth transceiver is powered by the Arduino UNO, while the Rx and Tx pins are connected

to the Arduino’s Tx and Rx pins respectively. Since the transceiver operates these pins at lower

23

Figure 7: Image of Vibration Motor used in
circuits, compared with quarter

logic levels than the Arduino, 3.3V compared to 5V, a voltage divider was added between the

Arduino’s Tx and the transceiver’s Rx pin. The motor had much higher current requirements than

what the Arduino could provide, but could operate on the voltage of the selected button batteries.

To create a proper current gain, the pin previously used for the LED in our older circuit was

connected to the base of a 2N3904 bipolar junction transistor, while the motor was hooked up to

the collector with the CR2032 button battery as the voltage source. Nothing needed to be placed

in the emitter end and thus the circuit was complete. The final schematic can be seen in Figure 8.

The internal behavior of the Arduino UNO in this circuit is based on a simple,

straightforward program, the code of which is provided in the Appendix. When the Arduino is

first turned on, it sets the output pin for the motor while also setting its internal baud rate for

communicating with the Bluetooth transceiver, in this case a data rate of 9600. The controller

then waits for any transmission to enter its receiver, upon which it checks the value encoded in

24

Figure 8: Schematic of implemented Arudino-based circuit, with component values

the signal. If the value received is a ‘1’, the motor will turn on. There is also a check to see if the

return message, to confirm with the transmitter it has received the ‘1’, has already been sent. If

not, the return message is sent. The controller will automatically shut off the motor after 30

seconds, if the user has not already done so, in order to conserve energy on the current driver

battery. The motor can be activated again at any time. However, due to the behavior of our

software application the Arduino circuit needs to be powered off and back on again.

For the smaller microcontroller circuit, some additional research was conducted to decide

on a smaller substitute for the Arduino. The chosen substitute were microcontrollers with the PIC

architecture, in this case the PIC24FV16KA301 in a PDIP casing [10], seen in Figure 9. PIC

microcontrollers come in various customizations for program memory, EEPROM, I/O ports,

special functions and so on. Since our Bluetooth transceiver is a serial communication

component using the RS-232 standard, our decision for this particular variant of PIC was based

upon whether it had a UART (Universal Asynchronous Receiver-Transmitter) port, which can

handle the serial standard. The internal UART module for these types of microcontrollers also

have their own dedicated registers for handling the transfer of data through the port, making the

programming process easier.

25

Figure 9: Concept image of PIC used in circuit

The circuit construction is similar to the previous Arduino circuit, with some

modifications to suit our new controller. For power, the microcontroller will be directly

connected to our 6-volt double button battery source from the preliminary design. However, the

PIC24FV16KA301 allows only a maxmium voltage of 5-volts. To resolve this voltage problem,

the voltage source will be connected to a voltage regulator, which will restrict the voltage to 5-

volts and keep our controller safe. This is still enough power for the all the other components in

the circuit, including the Bluetooth transceiver, but there is an issue with the I/O ports on the

microcontroller.

The PIC selected for this project behaves normally with low voltage values, cases where

the value is a 0, but there is not a large enough range for high voltage values such that we can

wire the components the same as the Arduino circuit. Higher voltages in to the microcontroller

must be about four-fifths to a whole of the source voltage (about 4 to 5 volts in our setup) in

order to be read properly, while high voltage coming out ranges from 4.1 to 4.4 volts. If we base

our circuit upon the Arduino circuit, both the Bluetooth transceiver and the motor need to have

voltage dividers and proper resistors chosen to ensure that neither component is fried. The

Bluetooth transceiver has the voltage at its Rx pin dropped with the base of our current driver

dropped for the motor, which our previous transistor can still handle. Since the motor itself is

powered by our voltage source from the volage regulator, we also drop the voltage with a divider

for its input voltage. For programming and operating purposes, this variant of the PIC

microcontroller also needs to have specific capacitors placed on various pins, mainly the reset

clear, voltage source and drain, and the special capacitor pin. Both the schematic for this circuit

and the implementation on a performance board (compared to a quarter) can be seen in Figures

10 and 11.

26

The internal programming of the PIC microcontroller in this circuit was formed from

most of the same logic as our Arduino program, just with a longer set up process. Before we can

27

Figure 10: Schematic of implemented PIC-based circuit, with component values

Figure 11: Image of PIC circuit on performance board,
compared to quarter

use the UART on the PIC, we set the parameters of our UART modules behavior, including

datasize, baud rate, parity and other settings. Since our PIC contains two UART modules, which

changes the pin mapping depending the one selected, we only picked and specified the first

module in our program code. The module also needs to know which bit data mode we will be

operating in, as well as the parity and stop bits. We want the Bluetooth transceiver to read in one

byte at a time, equivalent to the amount of information in our ‘0’ and ‘1’ values from the

Arduino, so the module was set to operate in an 8-bit mode, with an even parity check and two

stop bits. After setting these parameters, we then enable the module and wait.

With the Bluetooth transceiver handling the connection between the smartphone and the

PIC, the microcontroller only waits for a “receive interrupt”, indicating that the Receive Register

(UxRXREG) has data in it. Next, it will check if there was any overflow in the register and run a

parity check. From this, the microcontroller will know if we are receiving the proper data types.

Lastly, the data from the Receiver Register will be read and compared to our signal values. If the

byte received is a ‘1’, then the motor will be set to voltage high. Just like the Arduino circuit, the

PIC will wait 30 seconds before turning off the motor automatically.

Theoretically, this program will work, but there were some difficulties in programming

the PIC. Using the PICKit3 debugging tool[11], attempts were made to download the program to

the chip, but the code was wrought with compilation errors that were difficult to fix.

Downloading blank template programs to the microcontroller worked, but would not with the

planned one. Further scheduling issues resulted in lack of time for field testing the program, so it

is unknown whether the code works. Even so, the code has been provided here in the Appendix

for your edification, and the problem could be solved by the reader if they choose to do so.

The other half of our implementation consists of the smartphone application. When

programming an application for Android OS, there needs to be a few rules as to which versions

28

of the operating system the program will work on. For this project, the minimum SDK

requirement was set to 19, while our target API was 23. This means that our program will run on

any smartphone with Android version 4.4 (Kit-Kat[12]) or later, but compiles for Android

version 6.0 (Marshmallow[13]), following that version’s programming syntax. This will cover

about 70% of the current Android market, as of March 2016. The software was also coded using

Android Studio[14], an integrated developing environment specifically design for Android and

backed by the developers of the operating system.

The behavior of the application was divided into three separate classes. “MainActivity”

handles the main menu, the time selection from the user, and setting the system alarm service.

“bluetoothSearch” searches for the receiver on the users command, using the smartphone’s

system Bluetooth service as a transmitter. “alarmReceive” establishes the remote connection with

the receiver and manages the communication between the devices. All these class are managed

by a “manifest”, as well as several layout files that control the flow and appearance of the

application. The code for the three main classes, including the string resources for readability, is

provided in the Appendix.

Inside of MainActivity, there are several sub-classes and methods that represent certain

behaviors of the application. Aside from the onCreate and onActivityResult methods, which are

standard for the main launcher activity of an Android program, this class contains implemeneted

versions of TimePickerDialog and WakefulBroadcastReceiver, both abstract classes. The

TimePickerDialog contains a time picker widget (Figure 12), which allows to the user to select a

time when they press the “SET ALARM” button on the main menu. This information is then sent

to the internal setAlarm method within MainActivity, which is used to set a java.Calendar

instance that is converted into milliseconds for AlarmManager. The Alarm Manager class allows

us to get the system alarm service and set a time for the alarm to activate. Due to differences

29

between versions of Android, AlarmManager has to be set based upon the user’s installed

version. Once we know which version, we can then have this alarm set to the system alarm list,

which upon passing will go to our WakefulBroadcastReceiver. This sub-class is designed to be

activated when the alarm goes off, which then starts the alarmReceive service. If the user wants

to cancel the alarm, MainActivity can still use the same AlarmManager and remove the set alarm

from the system alarm list directly.

“bluetoothSearch” will start up when the user presses the “FIND ALARM” button. This

class contains an implementation of the BroadcastReceiver abstract class, which will collect

MAC addresses from Bluetooth devices in the vicinity of the smartphone. These MAC addresses

are all that is needed to initiate a Bluetooth connection. On the screen, they will be divided into

two lists: Previously Paired Devices and New Devices, as seen in Figure 13. The receiver will

appear under the former list if the system has been used before, as the smartphone will remember

30

Figure 12: TimePicker on screen Figure 13: Bluetooth device list

past devices. If the receiver is not found on screen, then the user can press the “Scan For Alarm”

button, which will start a discovery search process for nearby devices. To obtain the MAC

address, the user simply selects the receiver, and the address is parsed out of the list and saved in

the MainActivity for use in the alarmReceive class.

As stated before, the alarmReceive class behaves as a service that is activated by the

MainActivity’s “WakeReceiver” and is not visible to the user. When activated, the service runs

and manages the ConnectedThread sub-class. This sub-class first creates a Bluetooth connection

through a BroadcastReceiver and then uses read and write functions to communicate. In our case,

this Thread is immediately opened using the MAC address provided and sends the ‘1’ character

out to our receiver. Once the data is sent, the service closes the connection immediately, since

our system involves only one-way communication between the smartphone and receiver. This

also “unregisters” the BroadcastReceiver within the alarmReceive service, meaning that the

receiver needs to be powered-off between each use.

Overall, the program runs through a series events, as laid out in Figure 14. The user first

opens the application and is prompted to turn on their Bluetooth service for bluetoothSearch.

Upon doing so, they then find the receiver and pick it for the application to remember. The MAC

address is saved, which then allows the user to “set” the alarm through the TimePickerDialog. If

the receiver has not been found, then the alarm cannot be set. Using the TimePicker, the user sets

a preferable time, which the application will then set the system alarm service. At this point, the

user can actually close down the application. When the alarm time has passed, the alarmReceive

service will be activated, establishing a connection with the receiver portion of our system.

Lastly, this service will send a signal to the receiver, which will turn that circuit on, left to be shut

off by the user.

31

P ERFORMANCE E STIMATES AND R ESULTS

Even though both portions of the solution were implemented, tests were performed to

check if the system functions as designed. For the application part, the alarm needed to appear on

the system alarm list as well as sending the signal out to the receiver. Both of these requirements

confirm if the smartphone is remembering to activate the alarmReceive service at the designated

time while also communicating with the receiving end. For the receiver circuits, the motor

needed to turn on and we needed to check the power requirements of the system compared to

calculated estimates and the datasheets. For the overall system, the smartphone needed to

wakeup quickly, send a signal to the receiver, establish the Bluetooth connection, activate the

motor, and shut the motor off automatically, all within the required range of 20 feet. Before

testing the overall functionality of the system, current readings of the Arduino-based circuit were

measured first, while the PIC-based circuit was estimated. These measurement were compared to

their estimated values, shown in Table 6.

32

Figure 14: Logic flow of smartphone application operation process

Table 6: Estimated and Actual Measurements of the ArduinoCircuit

Aspect Measured Estimates / Datasheets Actual

Bluetooth Transceiver (Not Connected) 30~40 mA 4~40 mA

Bluetooth Transceiver (Connected) ~8 mA 20 → 3.2 mA

Current, Bluetooth Tx Pin to Arduino ~8 mA 5.11 mA

Current, Arduino to Bluetooth Rx Pin ??? .53 mA

Current, Motor from 3V (ON) 85~100 mA 44~48 mA

Current, Motor from 3V (OFF) 0 mA 0 mA

One of the major areas of discrepancy between the estimates and the actual current

measurements is the Bluetooth transceiver. Although the datasheet states the transceiver will be

between 30 and 40 mA, the current actually fluctuated between 4 and 40 mA when powered by

the Arduino UNO. When the transceiver establishes and maintains a connection, the current is

supposed to drop to about 8mA, but instead started at 20mA and quickly dropped to 3.2mA. This

significant drop in power is beneficial, as less current is being drawn and thus less power needed.

However, when it is not connected, i.e. the duration of typical use for the system, there will be a

serious energy issue not only in the Arduino-circuit, but more so in the PIC-based circuit.

The motor was another major concern in terms of power, since it requires a larger current

draw to start up. Datasheets for the motor stated that it needed at least 2.6 volts along with an

85mA current to start up. When the motor ran on the Arduino circuit, the current ranged from 44

to 48mA, varying depending on the amount of pressure applied to the motor or whether it was

anchored down. This was guaranteed by the common-base setup for the transistor switch, but

also the 3-volt 210mAh button battery ensured the proper power. In our Arduino circuit, the

motor actually runs with less current draw then expected; a great benefit that reduces strain on

the microcontroller and the button battery. Due to the estimated lower current requirements of

the PIC microcontroller’s I/O pins, the motor should not pose a current draw problem but this

33

aspect still needs to be tested.

Next, the application was tested to see if it would activate the receiver circuit properly.

This was done simply by going through the activation process as a future user would. During the

early testing stage, the range of the Arduino-based receiver was tested in a radio-noise free

environment with five trials, each distinguished by the distance the receiver was tested at. The

results of these trials with comments is presented in Table 7.

Table 7: Range Trials for Arduino Circuit

Trial #
Parameters

Comments
Time (min) Distance (m or ft.) Additional

1a-b 5 .3 m / ~1 ft.
a – phone Bluetooth off
b – phone Bluetooth on

a failed, b success

2a-c 6
1.4 m / 4.62 ft.

None
a-b failed, code fixed

c success

2d-f 1~2.5
(code fix) Bluetooth

automatically enables
d-e failed, code fixed

f success

3 4 ~2.7 m / ~8.9 ft.
No line-of-sight,

Arduino replugged in
Success

4 5 ~4.5 m / 14.85 ft. Same as #3 Success

5 4 ~6m / 19.8 ft. Same as #3 Success

The first two trials both failed on their first round, due to errors or quick fixes in the

application code. Even after the code was corrected during Trial #2, it was discovered that the

Arduino circuit needed to be plugged in again after one round of use, since the application

unregisters the BroadcastReceiver for connecting and communicating with the circuit. The

subsequent trails had more consistent parameters: removing line-of-sight by placing human head

in front of transceiver, ensuring that Bluetooth was turned off on the phone, and that the receiver

circuit had been previously unplugged before setting the alarm. In all of these trails, the circuit

worked at each distance, even in the final trial of approximately 20 feet, meeting our desired

range requirement on the Arduino circuit.

34

Now with these measurements, we can make changes to the design to increase feasibility

of a final product and improve the system behavior. Due to programming problems, the PIC

microcontroller was not tested and current measurements were not taken for lack of faith in the

setup presented in the schematic. The type of PIC microcontroller used also contained more

features and functionality than needed, and could be reduced to a smaller version that meets the

bare minimum design requirements we presented earlier. The next time this system is

implemented, we will ensure that this circuit is properly built and runs as intended. As for

working parts of the Arduino-based circuit, the Bluetooth transceiver turned out to be a major

power drain on the system, which could be disastrous for the PIC-based circuit, where in that

case the power would only last for one typical night of sleep (9-10 hours). This was not as low-

powered as expected, so either a Bluetooth transceiver with a lower current rating needs to be

used, or the system should run on the Low Energy Bluetooth standard[15]. The power

consumption of the Arduino microcontroller itself was not considered during the testing process,

but by design the unit requires way too much power for our future circuit, and thus must be

removed entirely and replaced with the PIC or a smaller microcontroller.

P RODUCTION S CHEDULE

Designing the solution took several steps, involving some planning and decision-making

along the way. The first step in this process was to finalize the functional decomposition before

moving on to researching parts. Various types of parts for each aspect of the preliminary design,

including some that would be part of the final design, were compiled into a spreadsheet for

comparison on cost and specifications. These parts were then ordered over the next few weeks as

decisions were made about which specific types would be used. Once most of the parts were

procured, testing was started on the Bluetooth transceiver and interaction with the Arduino board

and smartphone, using the LED switch circuit discussed in the Preliminary Design.

35

At this stage, the design still needed to be finalized, but implementation had also begun.

The piezobuzzers were first tested using a modified version of the LED switch circuit, while

basic training on programming for Android OS was completed. Next, various PIC

microcontrollers were researched, compared and picked for the final design and implementation,

to which samples were ordered along with a physical debugging tool. Before receiving these

parts, logic for the smartphone application was planned out with initial programming practice on

some key behavior of Android programs. Once the microcontroller samples were received, the

schematics for both the Arduino and PIC circuits were finalized.

At the same time, some more research on built-in Android functions was completed and

programming the actual application had begun. There were initial problems with the code in its

early stages, but in a short amount of time the application began functioning with the Arduino

circuit. Afterwards, this software was repeatedly tested with the Arduino, while the code was

cleaned up and finished. Focus then shifted toward programming the PIC circuit, which proved

to be a difficulty. With the PIC microcontroller set up in a circuit for programming, as required

by the user guides, we were able to download a blank sample program to the device, but the

actual program developed for this project would neither compile or download. Within the

remaining time left to work on this project, this was the one issue that remained unresolved.

Some improvements could have been made in scheduling to ensure that all aspects of the

implementation stage were actually finished. Learning how to use and program the PIC

microcontroller should have begun earlier in the design stage, with the PIC itself considered as a

design alternative in the preliminary design. Also, the workload could be spread out with timing

planned better, delegating proper amounts to each part of the implementation, especially

researching, circuit design, and programming. However, we would need a better sense of the

time requirements for completing certain parts of the project, which could not necessarily have

36

been known in advance.

C OST A NALYSIS

To ensure that either system could be sold as a product, we need to check to see if the cost

is feasible for market. If it is not at a reasonable price, the product may not sell and thus cannot

be produced to reach consumers. The pricing for components of each circuit is shown in Table 8

for comparison.

Table 8: Cost Comparison Between Implemented Circuits

Arduino Circuit PIC Circuit

Parts Cost Parts Cost

Arduino Board $24.95 PIC24FV16KA301-I/P $2.90 max

Vibration Motor $4.95 Vibration Motor $4.95

CR2032 Battery $1.95 2xCR2032 Battery $3.90

Bluetooth Transceiver $4.95~9.95 Bluetooth Transceiver $4.95~9.95

Resistors/Transistors $1 max Resistors/Transistors $2 max

Voltage Regulator ~$1

TOTAL $37.80~42.80 TOTAL $19.70~24.70

Comparing these two, the PIC circuit is certainly the cheaper of the two, even though it is

a more condensed system, with a total price almost half as much as the Arduino circuit. The only

concern about the PIC circuit, as talked about in the Results section, is the significant power

drain on the battery. Unless lower-powered components are implemented, the batteries will

become an additional cost to the user in the future. The Arduino circuit poses a problem with cost

on top of its bulkiness; the exorbitant price further cementing our reasoning that this circuit is not

feasible as a product. For future versions of the system, we will see if we can cut costs further,

because although the PIC circuit is the cheaper option, it still seems a bit expensive for a simple

Bluetooth-based receiver.

37

U SER’S M ANUAL

Although both the Arduino-based and PIC-based circuit behave similarly, there are a few

differences concerning power and usage. The Arduino-based circuit can either be plugged into a

wall outlet with an AC adapter, giving sufficient power for as long as needed, or powered by a 9-

volt battery hooked up with wires and lead pins attached to the V_IN and GND pins on the unit.

The 3-volt button battery for the motor will also need to be replaced with the proper type,

CR2032 Lithium-Ion, if the previous one fails. This circuit also turns on automatically once the

Arduino is powered, but needs to be unplugged again after each use to clear memory and ensure

Bluetooth connects each time.

For the PIC circuit, one needs to simply flip the switch on the battery case and the circuit

has power. If the circuit does not work during use, i.e. the motor does not vibrate, most likely

either one or both of the 3-volt button batteries is dead, which need to be replaced with the

proper type just like the Arduino-based circuit. If that does not solve the problem, then any one

of the components within the circuit is dead, most likely the Bluetooth transceiver or PIC

microcontroller. In this situation, the circuit no longer works and those components or the whole

product need to be replaced.

For the smartphone application, there is a specific order that the user needs to do for the

system to work. Future versions of the software will correct the awkward flow. First off, the

smartphone needs to have Bluetooth capabilities and must be running at least Android OS

version 4.4. “Kit-Kat”[12]. When the user opens the application, he will first be asked to turn on

Bluetooth. Once doing so, they need to “find” the alarm, by turning the receiver on and pressing

the “FIND ALARM” button on the main screen (Figure 15). If the system has been previously

used before, it should appear on the first list, “Previously Paired Devices”. If not, the user can

press “Scan for Alarm” and the application will search for Bluetooth devices in the vicinity. If

38

the alarm name appears, then the user taps it and the alarm will be ready for use.

Next, the user can press “SET ALARM”, which will display the time picker. The default

time presented will be the current time when the button is pressed, so the user should set a time

that is in the future, pressing and dragging the hours and minutes to the desired time. If the user

sets the wrong time, they should pressed “CANCEL ALARM” and try again before closing the

application. At this point, the application can be closed and Bluetooth turned off, since the time is

internally saved in the smartphone and Bluetooth will automatically turn on at the alarm time.

The phone may be screen-locked as well, but should not be powered-off, and the user can check

the alarm time by looking at the time next to the little alarm clock symbol found anywhere the

time appears on screen (Figure 16). At most, there will be a ten second delay between the

smartphone activating the alarm service and the receiver activating. When the receiver motor

39

Figure 15: Main menu for
smartphone application

Figure 16: Screen image of alarm time with
system clock

begins to vibrate, the user may shut off power to the circuit after waking up or the motor will

shut off automatically after thirty seconds.

D ISCUSSION, C ONCLUSIONS, AND R ECOMMENDATIONS

The main point of this project was to create a quieter alarm device, that users could wear

and would allow them to wake up without waking others in a room. The final implementation

needed to be compact, but able to handle wireless transmission such as to communicate with a

smartphone, and had to be powerful enough to work in a bedroom of typical size.

We first defined how our design to the solution would function and researched potential

approaches of implementing the circuit. Alternatives to each portion of the initial design were

decided by the conclusion of the preliminary design stage. Upon procuring initial parts, the

design was finalized based upon further research and some initial testing of the solution. With

this information, an alternative to the Arduino-based circuit was sought through the PIC

microcontroller; the Android application being developed in tandem. The final PIC-based circuit

was not developed past the design stage, as this version of the implementation was plagued with

programming issues. Focus was then shifted on to test if the software application would work

with the already functioning Arduino circuit. In the end, the two-part system worked as expected

within the required range and thus we can conclude that the concept works, but implementation

needs tweaking and refining for the future.

Both circuit designs had current supply issues, as the Bluetooth transceiver used in both

circuits required too much current in order to not be continuously connected with the

smartphone. Even though the Arduino circuit was feasible, it was neither compact nor low

powered to operate as an on-ear device. The PIC circuit’s power requirements remained partially

unknown and untested, but will be done in future work.

For future implementations, smaller mircocontrollers will be needed along with a much

40

smaller Bluetooth transceiver. The PIC microcontroller chosen for this project possessed more

abilities than needed and contributed to the programming issues. Finding simpler PIC

microcontrollers, which do exist compared to the one used this time, that meet the bare minimum

requirements is a must. It is unknown whether smaller Bluetooth transceivers can be found, but

this is critical for the solution’s success, with lower power ensuring that the device can last more

than one night of use. If not, then the logical behavior of either the application or the receiver

needs to change to account for this problem.

Although the software application worked exactly as planned, there are some aspects of it

that need tweaking. Differences in the behavior of the AlarmManager class between the target

Android APIs, or versions of the operating system, affected how the alarm was internally set in

the phone. This is beyond our control, as the operating system strives to save battery life, but the

options for using the AlarmManager beyond version 5.0, which is slowly becoming the bulk of

the Android market, are few. Alternative programming structures and methods will be researched

to improve this.

How the user runs the application and system needs to be streamlined, since some current

behaviors are repetitive or needless. When the user searches for the alarm, if he has previously

used the receiver system before, the receiver MAC address will already appear in the “Previously

Paired Devices” list and the user can simply select it. The smartphone only needs this address

and the application does not communicate with the receiver until the alarm activates, so it would

make more sense to only turn on Bluetooth if the user really needs to search for the receiver.

Eliminating the need to turned on Bluetooth until alarm time, as well as every time the

application is opened, is more convenient to the user. In addition, the overall layout and

formatting of the application screens could be cleaned up, along with adding features suggested

by peers, e.g. a “snooze” function.

41

Overall, we learned from this project the capabilities of a system that combines both

integrated circuits and software technology. It is possible to consolidate a separate receiver

system that will activate at the whim of a smartphone, another one of the many possibilities of

this wonderful device. The design and implementation procedure was lengthy, riddled with

sudden decision-making and difficulties that affected the final product, but from the failures of

the current design, we can learn to better manage the project timeline and do more thorough

research up front. Now, this process, designing solutions that contribute to the benefit of

humanity, has become a part of my toolbox of future problem solving.

R EFERENCES

[1] – Bluetooth Core Specification https://www.bluetooth.com/specifications/bluetooth-core-
specification

[2] – Daily Mail.com, Sarah Griffiths, An alarm clock that DOESN'T disturb your partner –
http://www.dailymail.co.uk/sciencetech/article-2541186/ (January 17, 2014)

[3] – BatteryMart.com, Hearing-Aid Batteries FAQ – http://www.batterymart.com/p-2010-04-29-hearing-aid-
batteries-faq.html

[4] – Information found through a search for Coin cell batteries (mainly Energizer manufactured) on Amazon.com,
during the month of October 2015.

[5] – SparkFun Electronics Coin Cell Battery: https://www.sparkfun.com/products/338

[6] – Specs and Information page for American Piezo Company buzzers: https://www.americanpiezo.com/standard-
products/buzzers.html

[7] – Blueterm Application development site: http://www.pymasde.es/blueterm/

[8] – Intronix Company Website: http://www.pctestinstruments.com/

[9] – SparkFun ElectronicsVibration Motor: https://www.sparkfun.com/products/8449

[10] – Product Page for PIC24F16KA301 family:
http://www.microchip.com/wwwproducts/en/PIC24F16KA301

[11] – Product Page for PICkit3 debugger tool: http://www.microchip.com/Developmenttools/ProductDetails.aspx?
PartNO=PG164130

[12] – Development Information page for “Kit-Kat”: https://developer.android.com/about/versions/android-4.4.html

[13] – Development Information page for “Marshmallow”:
https://developer.android.com/about/versions/marshmallow/android-6.0.html

[14] – Home page for Android Studio: https://developer.android.com/sdk/index.html

42

https://www.bluetooth.com/specifications/bluetooth-core-specification
https://www.bluetooth.com/specifications/bluetooth-core-specification
https://developer.android.com/sdk/index.html
https://developer.android.com/about/versions/marshmallow/android-6.0.html
https://developer.android.com/about/versions/android-4.4.html
http://www.microchip.com/Developmenttools/ProductDetails.aspx?PartNO=PG164130
http://www.microchip.com/Developmenttools/ProductDetails.aspx?PartNO=PG164130
http://www.microchip.com/wwwproducts/en/PIC24F16KA301
https://www.sparkfun.com/products/8449
http://www.pctestinstruments.com/
http://www.pymasde.es/blueterm/
https://www.americanpiezo.com/standard-products/buzzers.html
https://www.americanpiezo.com/standard-products/buzzers.html
https://www.sparkfun.com/products/338
http://www.batterymart.com/p-2010-04-29-hearing-aid-batteries-faq.html
http://www.batterymart.com/p-2010-04-29-hearing-aid-batteries-faq.html
http://www.dailymail.co.uk/sciencetech/article-2541186/

[15] – Informational page about the Bluetooth Low-Energy standard:https://www.bluetooth.com/what-is-
bluetooth-technology/bluetooth-technology-basics/low-energy

A PPENDIX

Arduino Circuit Code:
const int buzzpin = 13; // Set Arduino Pin for output
const int a_second = 1000; // Amount of ms in a second
const int buzz_time = 30; // Amount of seconds to buzz
const int baud_rate = 9600; // Set baud rate for Bluetooth
int turn_on = 0; // Determines if motor needs to turn on
int was_sent = 0; // Make sure verification only happens once

void setup() {
 pinMode(buzzpin, OUTPUT); // Activate buzzpin
 digitalWrite(buzzpin, LOW); // Make sure the motor is turned off
 Serial.begin(baud_rate); // Turn Serial on with set baud rate
}

void loop() {
 //If the transceiver receives any data, set state
 if(Serial.available() > 0){
 turn_on = Serial.read();
 was_sent = 1;
 }
 if (turn_on == '1') { // If 1 received, turn on motor
 digitalWrite(buzzpin, HIGH);
 if(was_sent == 1){ // Check if return message sent
 Serial.println("THANKS"); // Send a thank you back
 was_sent = 0;
 }
 for (int count = buzz_time; count > 0; count--){
 delay(a_second); // Wait the amount of seconds
 }
 digitalWrite(buzzpin, LOW); // Turn off motor
 turn_on = 0; // Must change to 0

// Otherwise will continue looping
 }
 else { // Else, Nothing was received
 if(was_sent == 1){ // Check if return message sent
 Serial.println(""); // Send nothing back
 was_sent = 0;
 }
 }
}

PIC Circuit Code (Not Working):
// Set Oscillator to desired settings
void config_osc(){
 OSCCONbits.COSC = 0b010;
}

43

https://www.bluetooth.com/what-is-bluetooth-technology/bluetooth-technology-basics/low-energy
https://www.bluetooth.com/what-is-bluetooth-technology/bluetooth-technology-basics/low-energy

// Initialize everything needed
void setup(){
 U1MODEbits.UARTEN = 0b1;// Enable the first UART module
 U1MODEbits.UEN = 0b11; // Enable pins, here U1RX and U1TX enable
 U1MODEbits.PDSEL = 0b01;// Set Parity-Data Selection, 8-bit even par
 U1MODEbits.STSEL = 0b1; // Set # Stop Bits, in this case 2
 U1MODEbits.BRGH = 0b0; // Set Baud Rate to Standard Mode
 U1MODEbits.USIDL = 0b0; // Allows operation in Idle Mode
 U1MODEbits.WAKE = 0b1; // U1RX pin will be sampled during Sleep Mode
 U1STAbits.UTXEN = 0b0; // Disable transmit bit, since unused
 U1STAbits.URXISEL = 0b01; // Interrupt is set
 TRISAbits.TRISA2 = 0; // Activate RA2 pin for motor, set as output
}

int main(void) {
 config_osc();
 setup();
 // Continuous loop
 while (1){

 // Check if receiver is active
 while(!U1STAbits.RIDLE == 0b0){

 // Check if we overflowed or had a parity error
 if(U1STAbits.PERR == 0b0 && U1STAbits.OERR != 0b1){

 // If buffer data is available
 if(U1STAbits.URXDA == 0b1){

 unsigned char rec_word = U1RXREGbits.U1RXREG;
 // Compare data and turn on motor

 if (rec_word == '1'){
 LATAbits.LATA2 = '1';
 wait_ms(30000);
 }
 }
 }
 // Clear overflow bit and shut off motor
 U1STAbits.OERR = 0b0;
 LATAbits.LATA2 = '0';
 }
 }
 return (EXIT_SUCCESS); // Shuts off when power pulled

Application Code:

MainActivity.java –

package edu.union.imowers.capstonealarmfinal;

import android.annotation.TargetApi;

44

import android.app.AlarmManager;
import android.app.Dialog;
import android.app.PendingIntent;
import android.content.Context;
import android.os.Build;
import android.support.annotation.NonNull;
import android.support.v4.app.DialogFragment;
import android.app.TimePickerDialog;
import android.bluetooth.*;
import android.os.Bundle;
import android.support.v4.content.WakefulBroadcastReceiver;
import android.support.v7.app.AppCompatActivity;
import android.view.View;
import android.widget.Button;
import android.content.Intent;
import android.widget.TimePicker;
import android.widget.Toast;

import java.util.Calendar;

public class MainActivity extends AppCompatActivity {

//Request Codes for Intents
private static final int BLUETOOTH_SYNC = 50;
private static final int REQUEST_BT_ENABLE = 100;

//Layout Materials
Button find_button;
Button alarm_button;
Button cancel_alarm;

//Toast Messages
private Toast blue_check;
private Toast alarmset_mess;

//Global Variables Particular To This Class
private BluetoothAdapter deviceadp;
private boolean alarm_found = false;
private String alarm_mac;
private AlarmManager alarm_setter;
private PendingIntent alarm_intent;

@Override
protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 deviceadp = BluetoothAdapter.getDefaultAdapter();

 //Create sync button
 find_button = (Button) findViewById(R.id.find_button);
 find_button.setOnClickListener(new View.OnClickListener() {
 public void onClick(View v) {
 if (deviceadp == null) {
 blue_check = Toast.makeText(getApplicationContext(),
R.string.bluetooth_no_support, Toast.LENGTH_SHORT);

45

 blue_check.show();
 }
 else {
 blue_check = Toast.makeText(getApplicationContext(),
R.string.bluetooth_avail, Toast.LENGTH_SHORT);

 blue_check.show();
 Intent go_blue = new Intent(getApplicationContext(),
bluetoothSearch.class);

 startActivityForResult(go_blue, BLUETOOTH_SYNC);
 }
 }
 });

 alarm_button = (Button) findViewById(R.id.alarm_button);
 alarm_button.setOnClickListener(new View.OnClickListener(){
 public void onClick(View v){ showTimePickerDialog(v); } });

 cancel_alarm = (Button) findViewById(R.id.cancel_alarm);
 cancel_alarm.setOnClickListener(new View.OnClickListener(){
 public void onClick(View v) {

// If clicked, alarm will be canceled
if (alarm_setter != null) {

 alarm_setter.cancel(alarm_intent);
}
// Let user know
alarmset_mess = Toast.makeText(getApplicationContext(),

R.string.alarm_cancel, Toast.LENGTH_SHORT);

alarmset_mess.show();
 } });

 //Bluetooth needs to be already turned on
 checkBluetoothOn();
}

@Override
public void onActivityResult(int requestCode, int resultCode, Intent data){

// If we asked user for a Bluetooth enable request
if(requestCode == REQUEST_BT_ENABLE) {
 // If Bluetooth was not enabled, ask user again
 if(resultCode != RESULT_OK){ checkBluetoothOn(); }
}

// If we are returning from bluetoothSearch after finding a MAC address
if (requestCode == BLUETOOTH_SYNC) {
 if (resultCode == RESULT_OK) {
 // Get Intent to retrieve MAC Address from bluetoothSearch
 alarm_mac = data.getStringExtra("MAC_address");

 //Should print MAC address to screen for testing
 Toast sync_mess = Toast.makeText(getApplicationContext(),
R.string.sync_done, Toast.LENGTH_SHORT);

46

 sync_mess.show();

 // Need to check if MAC address received is not empty
 if(!alarm_mac.isEmpty()) { alarm_found = true; }
 }
}
}

// Helper method, checks if Bluetooth is on using an Intent request
private void checkBluetoothOn(){

if (!deviceadp.isEnabled()){
Intent activateBlue = new Intent(BluetoothAdapter.ACTION_REQUEST_ENABLE);
startActivityForResult(activateBlue, REQUEST_BT_ENABLE);
}
}

// Activates TimePicker
public void showTimePickerDialog(View v) {

// Check if MAC Address is obtained, if not do not show TimePicker yet
if(alarm_found) {

DialogFragment newFragment = new AlarmSetter();
newFragment.show(getSupportFragmentManager(), "alarmSetter");

}
else {

Toast.makeText(getApplicationContext(), R.string.not_yet,
Toast.LENGTH_SHORT).show();
}
}

// Need to define sub-class to display TimePicker within MainActivity
// Non-static because we cannot call setAlarm without it
private class AlarmSetter extends DialogFragment

 implements TimePickerDialog.OnTimeSetListener {

@Override
@NonNull
public Dialog onCreateDialog(Bundle savedInstanceState){

// Use current time as default value
final Calendar current_time = Calendar.getInstance();
int current_hour = current_time.get(Calendar.HOUR_OF_DAY);
int current_min = current_time.get(Calendar.MINUTE);

//Returns instance of TimePicker with current time, 12 hour view with AM/PM
return new TimePickerDialog(getActivity(), this, current_hour, current_min,
false);
}

// Once user has said OK on the time, go to set the alarm

47

public void onTimeSet(TimePicker view, int hour, int minute){
setAlarm(hour, minute);

}
}

private void setAlarm(int hour, int minute){

// Get system service for alarms and set it to the AlarmManager
alarm_setter = (AlarmManager)
getApplicationContext().getSystemService(Context.ALARM_SERVICE);

// Get a new instance of Calendar
Calendar clock_set = Calendar.getInstance();

// Make sure the calendar is lenient so we do not have to worry about
changing day into the next month or week
if (!clock_set.isLenient()){ clock_set.setLenient(true); }

clock_set.setTimeInMillis(System.currentTimeMillis());

// Need to check if day is the next day
// Otherwise system will think the alarm has already passed
if(hour < clock_set.get(Calendar.HOUR_OF_DAY)){
int temp_day = clock_set.get(Calendar.DAY_OF_MONTH);
temp_day++;
clock_set.set(Calendar.DAY_OF_MONTH, temp_day);
}

clock_set.set(Calendar.HOUR_OF_DAY, hour);
clock_set.set(Calendar.MINUTE, minute);
clock_set.set(Calendar.SECOND, 0);

// Create intent and set AlarmManager with new time
// Intent will go to WakeReceiver, carrying along the MAC Address

Intent temp_intent = new Intent(getApplicationContext(),
MainActivity.WakeReceiver.class);

temp_intent.putExtra("MAC_address", alarm_mac);
alarm_intent = PendingIntent.getBroadcast(getApplicationContext(), 0,
temp_intent, PendingIntent.FLAG_UPDATE_CURRENT);

// If alarm was previously set with this application, cancel it
alarm_setter.cancel(alarm_intent);

// Go to separate alarm setting methods based upon current SDK
if(Build.VERSION.SDK_INT >= 21){ setManagerNew(clock_set); } // 5.0 and later
else{ setManagerOld(clock_set); } // 4.4 Kit-Kat

// Notify user that alarm has been set
alarmset_mess = Toast.makeText(getApplicationContext(), R.string.alarm_set,
Toast.LENGTH_SHORT);
alarmset_mess.show();
}

48

// Following two functions set the AlarmManager based on API
@TargetApi(21)
private void setManagerNew(Calendar time){
// If users want to fix, they can do so by pushing SET ALARM button
AlarmManager.AlarmClockInfo alarm = new
AlarmManager.AlarmClockInfo(time.getTimeInMillis(), null);

alarm_setter.setAlarmClock(alarm, alarm_intent);
}

private void setManagerOld(Calendar time){
alarm_setter.setExact(AlarmManager.RTC_WAKEUP, time.getTimeInMillis(),
alarm_intent);
}

// WakefulBroadcastReceiver sub-class that will activate at the right time
// Sends MAC Address to alarmReceive and starts the alarm activation process
public static class WakeReceiver extends WakefulBroadcastReceiver {

@Override
public void onReceive(Context context, Intent intent) {

BluetoothAdapter deviceadp = BluetoothAdapter.getDefaultAdapter();

// Check if Bluetooth is enabled. If not, force it on
while(!deviceadp.isEnabled()){ deviceadp.enable(); }

Intent start_wakeup = new Intent(context, alarmReceive.class);
String temp = intent.getStringExtra("MAC_address");
start_wakeup.putExtra("MAC_address", temp);
startWakefulService(context, start_wakeup);
}
}
}

bluetoothSearch.java –

package edu.union.imowers.capstonealarmfinal;
import android.app.Activity;
import android.bluetooth.*;
import android.content.BroadcastReceiver;
import android.content.Context;
import android.content.Intent;
import android.content.IntentFilter;
import android.os.Bundle;
import android.view.View;
import android.view.Window;

49

import android.widget.AdapterView;
import android.widget.ArrayAdapter;
import android.widget.Button;
import android.widget.ListView;
import android.widget.TextView;
import java.util.Set;

public class bluetoothSearch extends Activity {

private BluetoothAdapter deviceadp;
private ArrayAdapter<String> btdevicelist_curr;
private ArrayAdapter<String> btdevicelist_disc;

// BroadcastReceiver for accumulating MAC Addresses
private final BroadcastReceiver btReceiver = new BroadcastReceiver() {

public void onReceive(Context context, Intent intent) {
String action = intent.getAction();
if (BluetoothDevice.ACTION_FOUND.equals(action)) {

// Get the BluetoothDevice object from the Intent
BluetoothDevice device =

intent.getParcelableExtra(BluetoothDevice.EXTRA_DEVICE);

if (device.getBondState() != BluetoothDevice.BOND_BONDED) {
// Add the name and address to an array adapter to show later
btdevicelist_disc.add(device.getName() + "\n" + device.getAddress());
}

}

// When discovery is finished, check if any devices found
else if (BluetoothAdapter.ACTION_DISCOVERY_FINISHED.equals(action)) {

if (btdevicelist_disc.getCount() == 0) {
String noDevices = getResources().getText(R.string.nofound).toString();
btdevicelist_disc.add(noDevices);

 }
}
}
};

// The click listener for all devices in the device list
private AdapterView.OnItemClickListener deviceselect = new
AdapterView.OnItemClickListener() {
public void onItemClick(AdapterView<?> av, View v, int arg2, long arg3) {

String noPaired = getResources().getText(R.string.nopair).toString();
String noFound = getResources().getText(R.string.nofound).toString();

// Cancel discovery since device has been selected
deviceadp.cancelDiscovery();
String info = ((TextView) v).getText().toString();

// If nothing found, DO NOT continue forward with splicing MAC Address
 // If any devices have been found, then proceed

if ((info != noPaired) && (info != noFound)){
//Take the selected MAC Address and save it to connect

50

// Send this information back to MainActivity
if (info.length() >= 17) {

String address = info.substring(info.length() - 17);
//Sending MAC Address back to main activity
Intent return_intent = getIntent();
return_intent.putExtra("MAC_address", address);
setResult(RESULT_OK, return_intent);

}
else {
// MAC Address splicing did not work, sure-fire check because our
// strings noPaired and noFound are automatically smaller

 setResult(RESULT_CANCELED, getIntent());
}

 finish();
}

}
};

// Method that runs when activity started
@Override
protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

// Put Device List in a Window
requestWindowFeature(Window.FEATURE_INDETERMINATE_PROGRESS);
setContentView(R.layout.activity_bluetooth_search);

//Get default adapter since we cannot pass it through an Intent
deviceadp = BluetoothAdapter.getDefaultAdapter();

//If user backs out at any point before discovery starts
setResult(RESULT_CANCELED);

// Register the BroadcastReceiver for Action Found and Discovery Finished
IntentFilter filter = new IntentFilter(BluetoothDevice.ACTION_FOUND);
registerReceiver(btReceiver, filter);
filter = new IntentFilter(BluetoothAdapter.ACTION_DISCOVERY_FINISHED);
registerReceiver(btReceiver, filter);

// Set up Array Adapters for displaying current and discovered items
btdevicelist_curr = new ArrayAdapter<>(this, R.layout.device_name);
btdevicelist_disc = new ArrayAdapter<>(this, R.layout.device_name);

//Set up the clickable ListViews so devices can be added during discovery
ListView pairedListView = (ListView) findViewById(R.id.paired_list);
pairedListView.setAdapter(btdevicelist_curr);
pairedListView.setOnItemClickListener(deviceselect);
ListView newDevicesListView = (ListView) findViewById(R.id.new_list);
newDevicesListView.setAdapter(btdevicelist_disc);
newDevicesListView.setOnItemClickListener(deviceselect);

// Go get current devices
getcurrentDevices();

51

// Initialize button to perform device discovery
Button scanButton = (Button) findViewById(R.id.begin_scan);
scanButton.setOnClickListener(new View.OnClickListener() {

public void onClick(View v) {
//Do device discovery, which will automatically add to ListView
discoverDevices();
v.setVisibility(View.GONE);
}

});
}

//Check to see if the device has already been previously paired
private void getcurrentDevices(){
Set<BluetoothDevice> pairedDevices = deviceadp.getBondedDevices();
if(pairedDevices.size() > 0) {

findViewById(R.id.title_paired_list).setVisibility(View.VISIBLE);
for (BluetoothDevice device : pairedDevices) {

btdevicelist_curr.add(device.getName() + "\n" +
device.getAddress());

}
}

else{
//No devices that have been paired usable thus just put no paired string

btdevicelist_curr.add(getText(R.string.nopair).toString());
}
}

// Initiate device discovery
private void discoverDevices(){
findViewById(R.id.title_new_list).setVisibility(View.VISIBLE);
deviceadp.startDiscovery();
}

// What to do when user closes the app
@Override
public void onDestroy(){

super.onDestroy();
//Ensure discovery is off
if(deviceadp != null){ deviceadp.cancelDiscovery(); }

// UnregisterReceiver to ensure that device stops searching
// Why the alarm receiver must be restarted/turned off before reuse
unregisterReceiver(btReceiver);

}
}

alarmReceive.java –

package edu.union.imowers.capstonealarmfinal;
import android.app.IntentService;

52

import android.bluetooth.BluetoothAdapter;
import android.bluetooth.BluetoothDevice;
import android.bluetooth.BluetoothSocket;
import android.content.Intent;
import android.support.v4.content.WakefulBroadcastReceiver;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.util.UUID;
public class alarmReceive extends IntentService {

// Constants, in this case the UUID for Bluetooth
private static final UUID alarmReceiveClass_UUID = UUID.fromString("00001101-
0000-1000-8000-00805F9B34FB");

// Globals
private BluetoothAdapter deviceadp;
ConnectThread alarm_connect;
ConnectedThread alarm_comm;

//Instantiate message to send to alarm
byte[] send_mess = {(byte) '1'};

public alarmReceive() {
super("alarmReceive");

}

@Override
protected void onHandleIntent(Intent alarm_intent) {

// Get local bluetooth adapter
deviceadp = BluetoothAdapter.getDefaultAdapter();

// Get MAC Address from Intent, needed to start socket
String MAC_Address = alarm_intent.getStringExtra("MAC_address");

// Start connection
alarm_connect = new ConnectThread(deviceadp.getRemoteDevice(MAC_Address));

// Start connected thread to alarm receiver
alarm_connect.run();

// Finish
WakefulBroadcastReceiver.completeWakefulIntent(alarm_intent);
}

//Class to initiate connection with Bluetooth console
private class ConnectThread extends Thread{

private final BluetoothSocket alarm_socket;
private final BluetoothDevice alarm;

public ConnectThread(BluetoothDevice device){

53

BluetoothSocket temp = null;
alarm = device;
// Need to check if we can create a RFCommSocket, since socket is final
try{
temp = alarm.createRfcommSocketToServiceRecord(alarmReceiveClass_UUID);

 } catch(IOException e){}
alarm_socket = temp;

 }

public void run(){

// Turn off discovery first, but it should be off anyway
deviceadp.cancelDiscovery();

// Attempt to connect to device
try { alarm_socket.connect();}
catch (IOException connectException){

try { alarm_socket.close(); }
catch (IOException closeException){}

 return;
 }
// Method to start the alarm and manage the connection
startAlarm(alarm_socket);
}
}

//Class to maintain connection with Bluetooth console
private class ConnectedThread extends Thread {

private final BluetoothSocket alarm_socket;
private final InputStream in_stream;
private final OutputStream out_stream;

// Constructor to make thread
public ConnectedThread(BluetoothSocket socket){

alarm_socket = socket;
InputStream temp_in = null;
OutputStream temp_out = null;
// Must check if we can obtain IO Streams, final variables
try {
temp_in = alarm_socket.getInputStream();
temp_out = alarm_socket.getOutputStream();
}catch (IOException e){} // If problem, don't do anything
in_stream = temp_in;
out_stream = temp_out;

}

public void run(){
byte[] buffer = new byte[1024]; // Set buffer for IO streams
int read_stream; // Set of bytes read from the read() call
while (true){
try{
read_stream = in_stream.read();

54

// This does nothing, just standard practice
}catch (IOException e){

break; // IO stream has been interrupted
}
}

}

// Write to output stream, sending data to alarm
// Implemented because we can choose what to send out
public void write(byte[] bytes){

try{
out_stream.write(bytes);
out_stream.flush(); // Clean up stream when finished
}catch(IOException e){} // If problem, no nothing and try again
}

// Close socket when done to clean up internal resources
public void cancel() {

try { alarm_socket.close(); }
catch (IOException e) { }

}
}

public void startAlarm(BluetoothSocket alarm_socket){
// Create socket
alarm_comm = new ConnectedThread(alarm_socket);

// Send preset message to alarm
alarm_comm.write(send_mess);

// Do not need to check message received from alarm
// Alarm will automatically turn off
alarm_comm.cancel();

}
}

strings.xml – (Resource list of strings referred to in main code)

<resources>
<string name="app_name">Ian Mowers Capstone Project</string>
<string name="app_title">Bluetooth Remote Wakeup Alarm</string>
<string name="app_subtitle">Ian Mowers Capstone Project 2016</string>
<string name="title_activity_bluetooth_search">bluetoothSearch</string>
<string name="title_activity_bluetooth">bluetooth</string>
<string name="bluetooth_avail">Bluetooth Supported, Searching for Alarm
Device</string>
<string name="bluetooth_no_support">Bluetooth not supported on this
device</string>
<string name="blue_en">Bluetooth Enabled</string>
<string name="not_yet">Alarm Not Found Yet, Please SYNC first</string>
<string name="nopair">Alarm not paired</string>

55

<string name="nofound">Alarm not found</string>
<string name="sync_done">Alarm Found and Saved</string>
<string name="alarm_set">Alarm Time Set</string>
<string name="alarm_cancel">Alarm Setting Canceled</string>
<string name="title_activity_alarm_receive">alarmReceive</string>
<string name="MAC">MAC_address</string>
<string name="find_button">FIND ALARM</string>
<string name="alarm_button">SET ALARM</string>
<string name="cancel_alarm">CANCEL ALARM</string>
<string name="paired_list">Previously Paired Devices:</string>
<string name="new_list">New Devices:</string>
<string name="scan_button">Scan For Alarm</string>
</resources>

56

