
Household Waste Tracking System

Senior Capstone Design By James Triola

Adviser: Walter Dixon III

The Issue

- America has a waste problem
- In 2012: 251 million tons of landfill trash
 Generated
- Personal Waste is around 4.43 lbs. per day

http://www.epa.gov/waste/nonhaz/municipal/

Solution

- Generate "Big" & personal waste data
- Create economic incentive for sustainability
- Create a culture of accountability

System Proposal

Catalogue personal waste production

Main Functions of the system

- Measure weight of the waste
- Identify the producer & Location of the waste
- Catalogue that data
- Present that data to customers, Trash companies, and local governments

Customer Identification

CAN WEIGHT

Location

MICROCONTROLLER /MEMORRY TAG AND WEIGHT TABLE

Risks/System requirements

- Waste measurement
- -Load Cell/Load Cell interface
- Customer Identification
- -RFID/GPS
- Location
- -GPS/GPRS
- Data Storage/Transmission
- -Flash Storage/GSM

Required Load Cell Tolerance

• Av. Monthly household bill: \$12-20

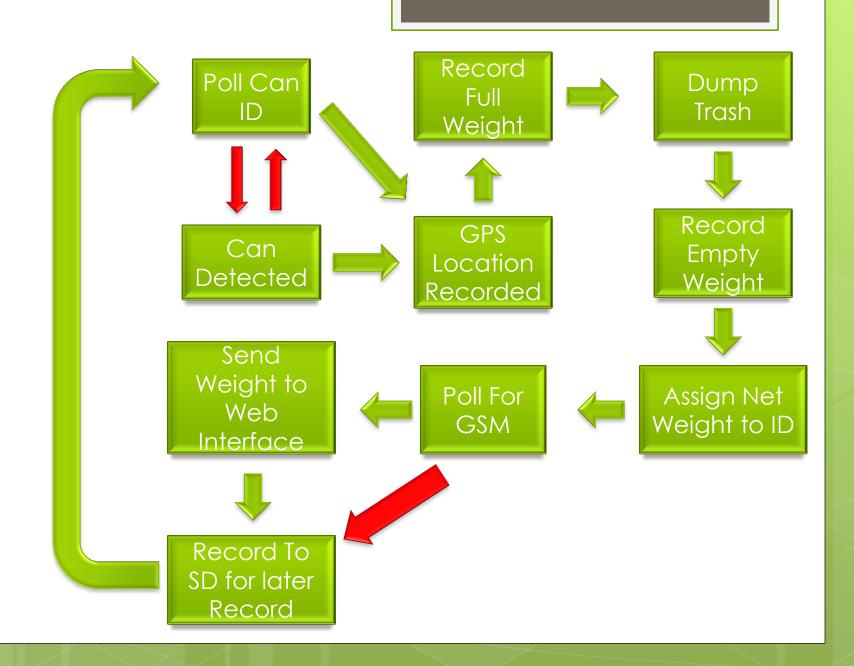
https://wasterecycling.org/images/documents/resources/Research-Bulletin-Service-At-A-Bargain.pdf

Av. Daily individual waste: 4.4 lb/day

http://www.epa.gov/waste/nonhaz/municipal/

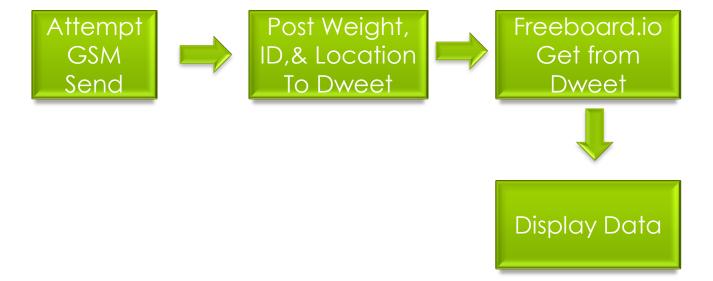
• Av. People of per household: 2.58

http://quickfacts.census.gov/qfd/states/00000.html


$$\frac{\$20}{1\ household\ month} \times \frac{1\ household}{2.68\ Persons} \times \frac{1\ month}{30\ days} \times \frac{1\ Person}{4.41\ lb\ day} = \frac{\$0.056407}{lb.}$$

$$\$0.01 \times \frac{lb.}{\$0.056407} = 0.177282\ lb.$$

0.177282 lb. = 80.413763 grams


Theoretical Load Cell Resolution

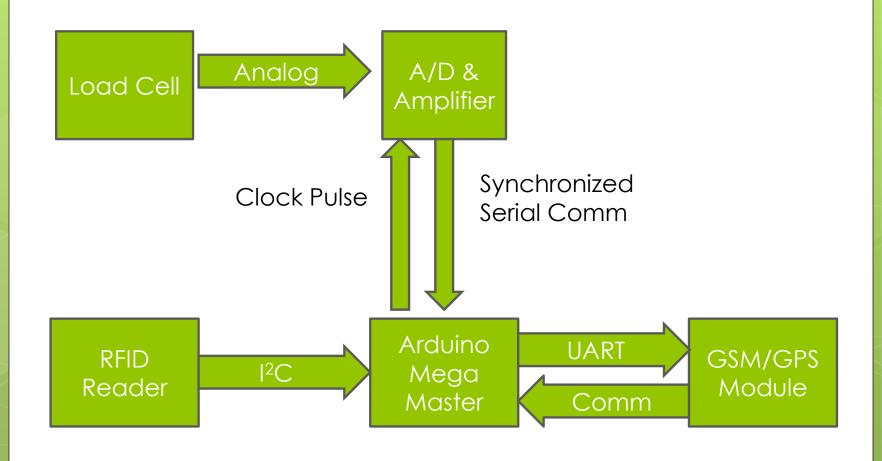
- A/D converter: 24 bit
- Max Load Cell Voltage: 0.5 V
- Load Cell response: 3333.33 kg/V

$$\frac{24 \ bit = 16777216 \ div.}{0.5 \ V} = 29.802 \times 10^{-9} \frac{V}{div.}$$
$$29.802 \times 10^{-9} \frac{V}{div.} * \frac{3333.33 \ kg}{V} = 99.34 \times 10^{-6} \frac{kg}{div.} = 0.9934 \frac{g}{div.}$$

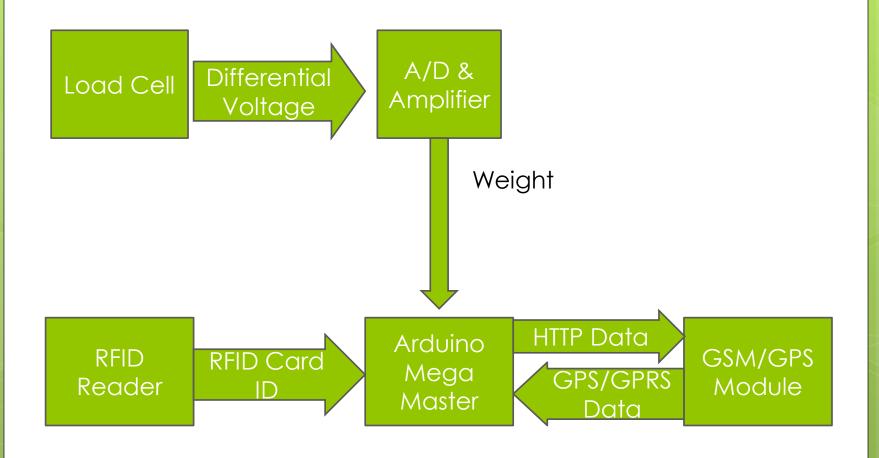
Web Interface Overview

Dweet

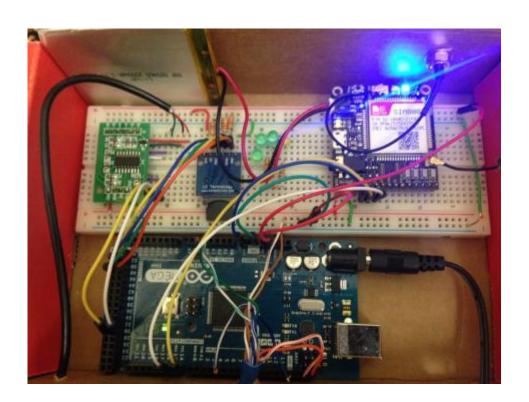
- Stores Variables through Http "Post"
- Variables retrieved through Http "get"
- Variables identified by "thing" and key


Dweet Payload:

```
{"this": "succeeded", "by": "dweeting", "the": "dweet", "with": {"thing": "000004", "created": "2016-03-05T03:01:05.117Z", "content": {"Weight": 26}, "transaction": "202aeac4-c3a9-4993-88ba-686bea350cd9"}}
```

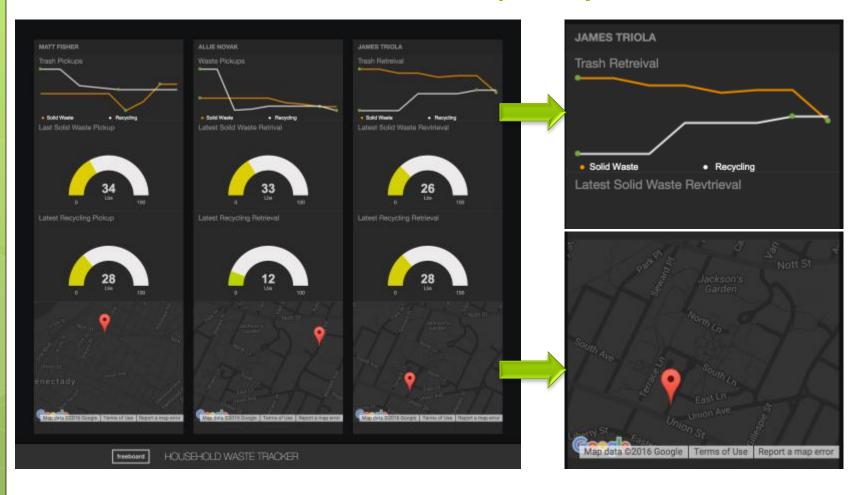

Freeboard.io

- Updates based on variables from Dweet using "get" commands
- Can display values, strings, locations, etc.


Device Connection


Devices Information

Device Build

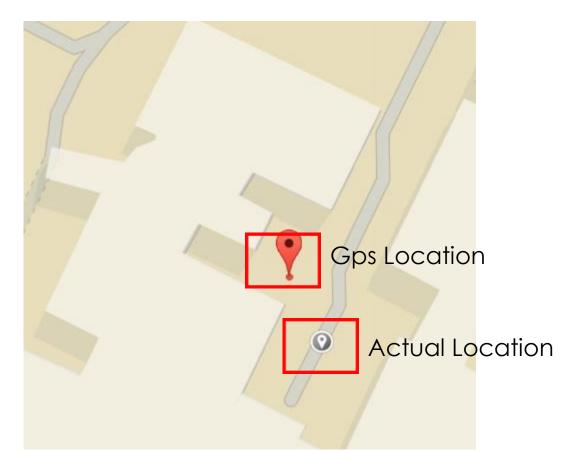


Test Device

Freeboard.io Display

Equipment Testing

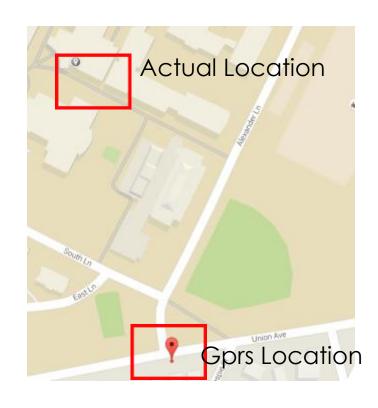
- RFID Distance
- Load Cell Accuracy
- GPRS Location Testing
- GPS Location Testing
- Cellular connectivity
- Overall function


GPS Location Testing

```
0,42.817493,-73.927833
nmddHHMMSS),latitude,lc
L32.700,1.35,5.3,1,,1.6
```

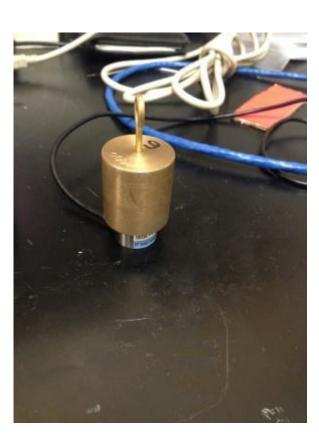
```
0,42.817518,-73.927842
nmddHHMMSS),latitude,lc
L32.400,0.06,164.9,1,,1
```

```
0,42.817518,-73.927842
nmddHHMMSS),latitude,lc
L32.400,0.02,358.5,1,,1
```

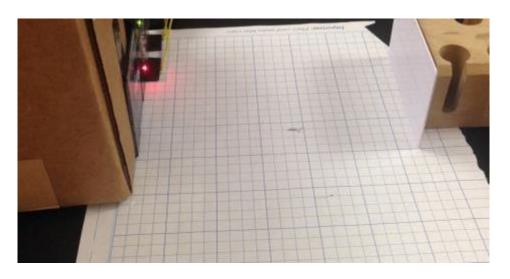

3,42.817518,-73.927842

GPRS Location Testing

```
GSMLoc long:-73.927261
          ---> AT+CGNSINE
          <--- +CGNSINF:
Waiting for FONA GPS 3D fi
Checking for Cell network.
          ---> AT+CREG?
          <--- +CREG: 0.1
          ---> AT+CIPGSML(
GSMLoc lat:42.815082
GSMLoc long:-73.927261
          <--- +CGNSINF:
Waiting for FONA GPS 3D fi
Checking for Cell network.
          ---> AT+CREG?
          <--- +CREG: 0,1
          ---> AT+CIPGSML(
          <--- +CIPGSMLOC
GSMLoc lat:42.815082
GSMLoc long:-73.927261
          ---> AI+CGNSINF
          <--- +CGNSINF: :
Waiting for FONA GPS 3D fi
Checking for Cell network.
          ---> AT+CREG?
          <--- +CREG: 0,1
          ---> AT+CIPGSML(
          <--- +CIPGSMLOC
GSMLoc lat:42.815082
GSMLoc long:-73.927261
```


GSMLoc lat:42.815082

Load Cell Testing


```
Reading: 200 g calibration_factor: -76.00
Reading: 200 g calibration_factor: -76.00
Reading: 199 g calibration_factor: -76.00
Reading: 200 g calibration_factor: -76.00
Reading: 199 g calibration_factor: -76.00
Reading: 199 g calibration_factor: -76.00
Reading: 200 g calibration_factor: -76.00
Reading: 199 g calibration_factor: -76.00
Reading: 199 g calibration_factor: -76.00
Reading: 200 g calibration_factor: -76.00
Reading: 199 g calibration_factor: -76.00
Reading: 199 a calibration_factor: -76.00
Reading: 199 a calibration_factor: -76.00
Reading: 199 a calibration_factor: -76.00
Reading: 199 g calibration_factor: -76.00
Reading: 198 g calibration_factor: -76.00
Reading: 198 g calibration_factor: -76.00
Reading: 199 g calibration_factor: -76.00
Reading: 198 g calibration_factor: -76.00
Reading: 199 g calibration_factor: -76.00
Reading: 198 g calibration_factor: -76.00
Reading: 199 g calibration_factor: -76.00
Reading: 198 g calibration_factor: -76.00
Reading: 199 g calibration_factor: -76.00
Reading: 198 a calibration_factor: -76.00
Reading: 198 g calibration_factor: -76.00
Reading: 199 g calibration_factor: -76.00
Reading: 197 g calibration_factor: -76.00
Reading: 198 g calibration factor: -76.00
```

Reading: 198 g calibration_factor: -76.00

RFID Testing

Infront			
Trial	Distance (cm)		
1	9.1		
2	9.2		
3	9.1		
4	9.2		
5	9.5		
average	9.22		

Infront (5cm displacement left)				
Trial		Distance (cm)		
	1	7.25		
	2	7.4		
	3	7.5		
	4	7.3		
	5	7.4		
average		7.37		

Expenses

Item	Quantity Needed	Price Per Unit	Total Estimated Price
Micro Controller	1	\$45.95	\$45.95
GPS/GSM sheild	1	\$49.97	\$49.97
GPS Antena	1	\$3.95	\$3.95
GSM Antena	1	\$7.95	\$7.95
GSM Antena Conector	1	\$4.95	\$4.95
GSM Battery Pack	1	\$12.95	\$12.95
Battery Pack Charger	1	\$7.95	\$7.95
50 Kg Load Cell	1	\$56.95	\$56.95
Load Cell amp	1	\$4.81	\$4.81
Micro Controller Power Supply	1	\$3.95	\$3.95
SD read/Write board	1	\$1.97	\$1.97
RFID Reader	1	\$39.95	\$39.95
RFID Chips	4	\$2.50	\$10.00
Arduino Headers	2	\$1.50	\$3.00
SD Card	1	\$0.49	\$0.49
Cell Contract/SIM card	1	\$15.00	\$15.00
		Total:	\$269.79

Questions/Comments?

Future Work

- Web Server & Database Development
- Retrofitting and testing in real world environment