
Parking Lot Occupancy
Monitor

Student: Taylor Ullrich
Project Advisor: Dr. Takashi Buma

Motivation
•  Due to the limited

number of parking
spaces at Reamer, it is
often difficult to find
parking

•  The ability to check a
website to find when a
parking spot is open in
Reamer throughout the
day

Available Technologies

•  Q-Free
-single space sensors mounted above the end of
each parking space

•  SmartParking
-Individual parking space sensors that gather and
transmits information for management, payment and
compliance monitoring

•  Traffiko
-Intelligent Digital Transport Enforcement System,
IDITES Camera

Performance Criteria and Requirements
Conceptual Requirements:

•  Recognizes parking in a parking lot of four spaces in a
row

•  Update a user interface correctly and in time for the
information to be relevant

•  Is able to operate in different lighting and weather
conditions

•  accuracy

Specific Requirements:
•  Field of View (number of parking spaces)

-required to monitor the four parking spaces in Reamer Circle

•  Refresh Rate

-the system will update the user interface in less than 1 minute

•  User Interface

-graphic representation of parking area

-easy to build, familiar interface

•  Accuracy

-must be somewhat accurate, accurately decting parking at a

80 % success rate

Block Diagram

System On Chip

Digital Camera

User Interface

Spot 1 Spot 3 Spot 4 Spot 2

Sensing Options
•  Infrared Distance Sensors

•  Ultrasound Distance Sensors

•  RADAR

•  Camera

Sensor Number Required Cost ($,$$,$$$) Difficulty (1-10)

Infrared 1 or more per
space

$ 7

Ultrasound 1 or more per
space

$ 7

Radar 1 total $$$ 9

Digital Camera 1 total $ 5 ✅

System On Chip

Platform Cost Familiarity Memory Internet
Access

Image
Processing
Capability

Arduino $25 (Uno) Slightly 32 Kbytes Ethernet
Board Add on

Limited by
Memory

Raspberry Pi $40 (Pi 3 B) Very 1 GB Built in
Ethernet/Wifi

Fully Capable
✅

The Hardware

Raspberry Pi Camera Module V2:

•  Max Resolution 3280 x 2464

•  CSI Cable Connector

•  Runs on Raspbian OS

•  Field of view of 48.8 degrees

Raspberry Pi 3 B:

•  CSI camera port

•  Ethernet and WiFi capable

•  Supports Raspbian

•  Python

Data Transmission and User Interface

Dweet.io:

•  “Ridiculous Simple Messaging for the Internet of Things”

•  Free

•  Used in ECE-481 Internet Of Things (IoT)

Freeboard.io:
•  Used in ECE-481 with Dweet.io
•  Free

State Machine and System Algorithm Outline

Test Bed

•  In order to develop and test this
system, the parking lot
environment was simulated
indoors on a smaller scale

•  Remote controlled cars simulate
real vehicles

•  Raspberry Pi is setup on a desk
focusing on the parking lot

Pi Camera

Raspberry Pi
Spot 1

Spot 2

Spot 3

Spot 4

Indoor Environment Results

•  Each difference image is created from the two adjacent images above
•  Motion of a single car is detectable
•  Difference Image (IMG 6 – IMG 1) shows motion from the first image to the last

image taken in a loop

IMG 1

IMG 3

IMG 2

IMG 6
Difference Image (IMG 6 – IMG 1)

Difference Image (IMG 1 – IMG 2)

Difference Image (IMG 2 – IMG 3)

Indoor Environment Results Continued

IMG 1

IMG 2

IMG 3

Difference (IMG1-IMG2) Difference (IMG2-IMG3)

Update User Interface

Difference (IMG3-IMG4) Difference (IMG4-IMG5)

IMG 3

IMG 4

IMG 5

First Set of Six Images:

Second Set of Six Images:

Update User Interface

Results Continued (OUTSIDE WORK)

Run Time Analysis and Data Usage
•  In the current software, 1 second

delays are implemented in between
each picture

•  The processing and capturing of 6
images only takes an average of
10.1075 – 6(^*1 second delays)=
4.1075 seconds

•  The data required to store the
image files captured, as well as the
difference images, totals to about
(this amount of memory)

Number of Loop
Executions

Time per loop
(seconds)

1 10.0092508793

2 9.99955177307

3 10.1097118855

4 10.3290479183

5 10.2096188068

6 10.163695097

7 10.1319139004

8 10.0188269615

9 9.97830796242

10 10.1258809566

AVG (delays) 10.1075

AVG
(no delays)

4.1075

Conclusions
•  System was successful at identify parking in

the indoor environment, and could update the
user interface accurately

•  Indoor tests show that without proper lighting,
detection is not possible

•  Processing run time is small enough to not
effect overall run time of the system

•  Testing is affected by the wind, system would
have to be sturdy

By the Requirements:
Field of View:
•  System can see all the spaces in

Reamer parking lot
Refresh Rate:
•  Time required to send messages is

approximately _____
•  Processing time without delays is

4.1075 seconds
User Interface:
•  User interface successfully updates

four different parking spaces
•  Is easily understood by a user, i.e.

obviously labels each spot in the
parking lot

Accuracy:
•  The implemented system does not

meet the 80 % accuracy requirement

Future Work

•  System requires much more rigorous tests outdoors, including weather and
lighting tests

•  Implement software to recognize the parking spaces on its own, eliminating an
initialization phase

•  Take more image data and store some useful images from previous iterations
of the loop

Questions?

