
 

 

 

 

 

 

Optical Coherence Microscopy Image Processing and 3D Visualization 

Matthew Caulfield 

ECE-498: Electrical Engineering Capstone 

Advisor: Professor Takashi Buma 

November 20, 2018 

 

 

 

 

 

 

 

 

 

 

 

 



1 
 

Table of Contents 

1. Introduction ................................................................................................................................. 3  

2. Background ................................................................................................................................. 4  

2.1 Optical Coherence Tomography and Microscopy ................................................................ 4 

2.2 3D Visualization Methods ..................................................................................................... 5  

2.3 Maintainability and Usability ................................................................................................ 6  

2.4 Ethical Considerations........................................................................................................... 6  

3. Design Requirements .................................................................................................................. 7 

3.1 Imaging Requirements .......................................................................................................... 7 

3.2 3D Visualization Requirements ............................................................................................ 8  

3.3 User Interface Requirements ................................................................................................. 9  

4. Design Alternatives ................................................................................................................... 10  

5. Design ....................................................................................................................................... 12  

5.1 Microscope Control Design ................................................................................................ 12 

5.2 3D Visualization Design ..................................................................................................... 13  

6. Preliminary Testing Results ...................................................................................................... 15  

7. Implementation Schedule.......................................................................................................... 19  

8. References ................................................................................................................................. 21  

9. Appendix ................................................................................................................................... 22  

9.1 Prototype code for surface visualization ............................................................................. 22  

9.2 Prototype code for upper and lower thresholding ............................................................... 23 



2 
 

Table of Figures 

Figure 1: Diagram of an Optical Coherence Microscope ............................................................... 4 

Figure 2 Process steps for en-face image stack ............................................................................ 12 

Figure 3 Process steps for surface visualization ........................................................................... 13 

Figure 4 3D center weighted low pass filter used for smoothing ................................................. 14 

Figure 5 Graph of filters and their computation time in minutes ................................................. 16 

Figure 6 graph of threshold versus computation time for a center weighted filter ....................... 16 

Figure 7: Image of Chicken Embryo After Scaling ...................................................................... 17 

Figure 8: Image of Chicken Embryo After Filtering .................................................................... 17 

Figure 9: Binarized image of chicken embryo .............................................................................. 17  

Figure 10: 3D visualization of chicken embryo ............................................................................ 18 

Figure 11 Nylon screw surface visualization using ImageJ.......................................................... 18 

Figure 12 Nylon screw surface visualization using Matlab .......................................................... 19 

 

 

 

 

 

 

 

 

 



3 
 

1. Introduction 

Traditional methods of microscopic imaging damages the specimen to prepare the sample 

for imaging. These methods of microscopic imaging also only create 2D images of a specific 

layer of the specimen. This project aims to address these problems by creating an imaging device 

that captures digital images at the microscopic level without harming the organism that is being 

imaged. While there are other forms of imaging that does not harm the specimen like MRI, CT, 

ultrasound, and x-ray, they are not designed for microscopic imaging. Optical coherence 

microscopes can capture images of a specimen at different depths without the need to slice or 

smear a specimen. Currently, Professor Takashi Buma is building an optical coherence 

microscope, and has yet to implement software to control the microscope and capture and 

process images from the microscope. The goal of this project is to create software that will 

capture images of an object at various depths and create a 3D visualization of the object or parts 

of the object.  

This report will cover the following aspects of the project. Background on optical 

coherence microscopy, optical coherence tomography, and other 3D visualization methods. As 

well as ethical, usability, and maintainability considerations. It will then cover the design 

requirements of the project including image resolution, graphics processor unit (GPU) choice, 

render time, and quality of 3D visualization. The fourth section will cover the design approach of 

the microscope. The fifth section will detail the current design of the project. The sixth section 

will focus on current testing results of the project and compare them to expected results and 

design requirements. The seventh section will be a tentative winter implementation schedule. 

The eight section will be references. The final section will be an appendix containing code.  
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2. Background 
2.1 Optical Coherence Tomography and Microscopy 

Optical coherence tomography (OCT) was invented to conduct non-intrusive biological 

tissue imaging. OCT uses either low coherence light or laser pulses to create cross-sectional 

images of the internal structures of biological samples. By using light interference between the 

object being imaged and a reference signal the OCT is able image the object at various depths 

[2]. To capture en-face, XY, images the OCT scans across the object in the XY plane. An optical 

coherence microscope (OCM) is similar to an OCT but is able to capture en-face images of an 

object without scanning along the XY plane by using a CCD camera. Figure 1 shows a block 

diagram of the OCM. A beam splitter is used to split the light source to create a reference light 

and to light the sample.  

 

Figure 1: Diagram of an Optical Coherence Microscope 

To use light interference to create an en-face image at a desired depth the OCM captures multiple 

images in succession of each other. However, the reference light comes from a mirror that is 

being oscillated by a piezo, so each image contains slightly different information. By combining 
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these images, we get the en-face image at the desired depth. To create an image stack of an entire 

object the OCM takes images at different depths of the object [3]. Since the OCM is able to 

image the object at different depths, 3D visualization of the object is possible.  

 

2.2 3D Visualization Methods 

The National Institute of Health created an open source software, ImageJ, that is used for 

image processing and more specifically biomedical image processing. Because it is open source 

it allows users to build their own plug ins. One such plug in is the 3D viewer. When a stack of 

images is uploaded to ImageJ, the plug in can turn the stack of images into three different 3D 

visualizations, the surface of the object, the volume of the object, and an orthoslice view of the 

object. For this project, the surface and volume visualization of the objects are the most relevant. 

ImageJ allows its users to perform manipulations to its surface and volume in the viewer 

window. For the surface, in ImageJ the user can change the thresholding value, use different type 

of interpolations, smooth the surface, and change the color and transparency of the surface. For 

the volume visualization of the object, ImageJ creates the volume by assigning transparency 

values to each voxel based on the brightness of the pixel in the corresponding image stack. 

ImageJ allows volume editing, and changes to voxel color and transparency in its 3D viewer [5]. 

For this project, Matlab will be used to implement similar features to ImageJ. Matlab is being 

used instead of an ImageJ macro, because the OCM will be run using Matlab. Instead of 

requiring the OCM user to use multiple programs and export data from Matlab in a format usable 

by ImageJ, it will be easier for the user to enter some information into Matlab, run the program 

and have not only the raw data from the OCM but a 3D visualization of the data as well. With 
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Matlab the user will also be able to use live data from the OCM to create surfaces and volumes 

as they image the object.  

 

2.3 Maintainability and Usability 

The goal of this project is to have an OCM that can be used by people not involved in 

building the OCM or writing the program used to run the OCM. Because it needs to be useable 

by people with different backgrounds, the operation of the microscope needs to be as simple as 

possible. Ideal use for the microscope would be to place a sample on the stage, hit run and after 

acquiring the images use scale or mouse to choose a desired region to make into surface 

visualization. The controls would also include a slider for choosing different pixel thresholds for 

the region.  The code and microscope must also be easily maintained by those who have some 

background on the OCM but not necessarily know how every part of the microscope works. So, 

the code will be well commented and easily understandable, so bugs may be fixed as detected 

and new features added as necessary.    

 

2.4 Ethical Considerations  

There are ethical considerations when creating an imaging device that could be used on 

biological tissue. For instance, if the device is used to diagnose diseases it’s accuracy may cause 

misdiagnosis, false positives, or false negatives. This could harm a doctor’s ability to accurately 

treat and care for a patient and may cause life threatening results. A less severe consideration is 

when using any medical information there are ethical practices that need to be followed like 

hipaa to make sure the privacy of individuals is maintained. Even when testing the microscope if 

it were to be tested on someone in the lab with no known disease, the microscope my find 
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something irregular. Because those in creating and testing the microscope are not medical 

doctors, they would no be able to diagnose the results from the images and would need to be 

careful with how they talk about and use the information.  

3. Design Requirements  

For the OCM to be considered successful it needs to meet certain design requirements 

and constraints. These requirements can be broken into three categories. Because Professor 

Takashi Buma is building the physical microscope, this project will focus on image and usability 

requirements. The three categories for this project are, imaging requirements, 3D visualization 

requirements, and usability. Imaging requirements focus on the individual en-face images that 

the OCM captures along with the frame rate of the camera. 3D visualization requirements focus 

on the processing speed and visualization quality. While usability focuses on the user interface of 

the system.  

 

3.1 Imaging Requirements 

Because this project is being completed for Professor Takashi Buma, he has specified 

certain requirements for the microscopes imaging capabilities. The requirements are as follows. 

The optical coherence microscope needs to be able to capture 30 frames per second (fps) of 

output images of the object in its stage. Because the final en-face images are compiled from 

multiple images to reach a frame rate of 30 fps the camera of OCM needs to capture at around 

120 fps. The pixel resolution is also tied to the frame rate of the microscope, so a higher frame 

rate is also necessary [3]. Another reason for 30 fps is desired so if a living organism is placed 

under the OCM the microscope can capture organ movements.   
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The current optical coherence tomography imaging device, that Professor Buma uses, has 

a lateral resolution of approximately 6 microns, so he would like a lateral resolution of around 5 

microns for the OCM. The lateral resolution will be tested using the full width half maximum. 

The depth resolution of the microscope needs to be 3 microns and will be able to differentiate 

between objects in the specimen that are at depths further than 3 microns away from each other. 

The image quality of each image will be judged spatial resolution and contrast-to-noise ratio. 

 The microscope needs to be able to image a specimen that is the size of at least a 2x2x2 

mm cube. The microscope needs to be able to image and model various organisms like 

vegetables, insects, and fish. 

 

3.2 3D Visualization Requirements 

For 3D visualization the design requirements come from using ImageJ as a standard for 

3D visualization.  This software for this project needs to be able to be ran in Matlab as further 

detailed in the user interface requirements, so the microscope cannot use ImageJ for its 

visualization. However, since ImageJ is a considered a standard for medical image processing, 

this project aims to recreate some of the 3D visualization abilities of ImageJ in Matlab. ImageJ 

has two 3D visualization techniques that would be acceptable for this project, surface and 

volume visualization. While implementing both types of visualization in Matlab would be ideal, 

it will only be necessary to implement one of the visualization techniques.  To measure the result 

of the visualization we will compare the results of the Matlab technique to how ImageJ 

visualizes the same data set. Comparisons will be done with either the Hausdorff distance or the 

second mesh structural distortion measure [6]. The Matlab visualization needs to be within five 
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percent of the ImageJ visualization according to the proposed comparisons to be considered 

adequate.  

Along with the types of 3D visualization being consistent with those from ImageJ, this 

project would also like to maintain some of the functionality of ImageJ as well. For surface 

visualization, this means allowing the user to choose thresholding levels, how much to 

smoothing to apply to the surface, and change the transparency of the surfaces. For volume 

visualization of the object the Matlab code needs to allow the users to edit the volume itself and 

colors of the volume once it is made.  

When computing 3D visualizations, time must also be taken into consideration. The 

overall computation time for the 3D visualization needs to be below 7 minutes. This includes 

time for transforming the data and rendering the data into 3D. While computation time is heavily 

based on the object being visualized, 7 minutes is a worst-case time for an object with a lot of 

surfaces and noise.  The ideal time for a typical object being visualized will be between two and 

three minutes.  

 

3.3 User Interface Requirements 

 Because the OCM will be used by those who did not build it or program it, the interface 

must be simple enough for them to use. For example, the user should not have to change lines of 

code to get their desired results. There must be a way for the user to adjust settings using either 

an input box or sliding scales on the computer. For ease, the whole program needs to be able to 

be run in a Matlab. Ideally the system would work by first adjusting some settings in Matlab and 

hitting run to collect the data from the OCM. Then after viewing the data adjusting a few settings 

for the 3D visualization, run a Matlab script and the 3D visualization of the desired object would 
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be made.  The only time the user should have to change lines of code is if they want to 

implement new methods for the software. The software should also be well commented and 

come with a guide so if necessary, the user can change the code or implement new features. 

  

4. Design Alternatives  

Because the physical microscope is being built by Professor Takashi Buma, this project 

focuses on controlling the microscope with a computer and processing the images from the 

microscope. The software for the OCM is primarily programmed in Matlab. The first thing that 

the code needs to do is move the microscope stage so that the microscope can image an object at 

different depths. In order to match the required depth resolution of 3 microns, the software will 

need to adjust the stage with a precision of at least 3 microns. There are two possible ways to do 

this. The first is to use the Thorlab ActiveX software that the microscope stage supports. While 

the software is not written in Matlab it has a graphical user interface in Matlab that provides 

control of the stage [7]. The other option is to use a motor attached to the stage control and use 

Matlab to control the motor. While the first option requires using commands that are not directly 

made for Matlab, which may cause some problems, it will give greater and more precise control 

of the stage. It will also not require physical construction which is another pro. The second step 

is to capture images using the charge coupled device camera. As one of the design requirements 

is for the software to be primarily in Matlab and Matlab can be used to control and collect the 

data from the camera, Matlab will be used for interfacing with the camera. The next step is to 

combine multiple images in succession of each other to create an image of the specimen at the 

desired depth. Matlab will be used to create the en-face image. After capturing an image at an 

individual depth, the OCM needs to be able to capture images at all the desired depths and create 
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an image stack with the desired depth. Once an image stack is created the software will need to 

turn the stack into a 3D visualization.  

The software will create a surface visualization of the object instead of a volume 

visualization. The surface visualization is preferable to a volume visualization because it conveys 

similar information while being easier to implement. There are four steps to creating the volume 

visualization: scaling the data, applying a low pass filter to the data, binarizing each image, 

creating the visualization. The data is first logarithmically scaled using log based 10 and then 

linearly scaled between 0 and 255. The data needs to be logarithmically scaled because the OCM 

will return values from zero into the millions. We then apply a linear scale to the data to bring it 

into a standard pixel scale. After scaling a low pass filter is applied to the data to smooth the data 

and lower the processing time of the final surface visualization. Three types of 3D filters were 

considered, a center weighted filter, a gaussian filter, and a cross. Based on preliminary testing 

the center weighted filter had the fastest processing time for the final surface visualization with 

similar 3D image quality. After filtering the data, it needs to be binarized. There were three 

possible methods for thresholding the data. Thresholding at a pixel value of 123 approximately 

half of the range of pixel values. Using the Matlab’s imbinerize function which uses the Otsu 

method for thresholding. Otsu’s method takes into consideration surrounding pixels when 

binarizing the image. The final method is to use an upper and lower threshold set by the user. 

The half point threshold and Matlab’s imbinerize worked similarly and both require no user 

input. However, both had the same con, it only took into consideration a lower threshold. When 

using both an upper and lower threshold set by the user, preliminary results showed that the 

computation time of the surface visualization took less time depending on the thresholds chosen. 

The one draw back is that the user is required to enter thresholds. If the user is unfamiliar with 
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the object, they may not choose the correct thresholds. However, it also allows greater control 

over what is in the final visualization.  

5. Design 

The design for this project is focused on software design and implementation because 

Professor Takashi Buma is building the physical OCM. The software design can be broken into 

two sections microscope control and 3D visualization. Microscope control encompasses stage 

control and image capturing. 3D visualization design can be broken into, 3D visualization type, 

implementation, and graphics processing unit choice.  

 

5.1 Microscope Control Design 

 The microscope control design can be broken into four steps detailed in the flow diagram 

in figure 2.  

 

Figure 2 Process steps for en-face image stack 

The first step for controlling the microscope is to control the stage of the microscope with the 

computer. The stage control will be done in Matlab using Thorlabs APT Active X controls. With 

the Active X controls Matlab the microscopes user will be able to control the stage with either a 

graphic user interface provided by active x or with commands that will be programmed for the 

OCM [7]. The programmed commands will allow the user to input a range of depths they would 

like imaged and Matlab will move the stage to the desired image depths. Control of the CCD 

camera will be done in Matlab as the camera being used has a Matlab interface.  Image 
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processing to combine multiple images into a single en-face image using light interference will 

also be done in Matlab as Matlab has an image processing suite with the tools needed for this.  

 The image stack that will be created of the object will be a three-dimension matrix of 

pixel values instead of an array of images. This is to make the image processing of the stack 

easier and in Matlab each individual image will still be viewable. Storing it as a matrix of pixels 

also allows image slices of the x-z and y-z plane to be viewed instead of just en-face images.  

The image processing will be easier because instead of having to iterate through each layer of the 

matrix, functions can be applied to the whole matrix.  

 

5.2 3D Visualization Design 

Surface visualization was chosen for the type of 3D visualization. It was chosen because 

visually it is similar to volume the visualization, but it is easier to implement in Matlab and 

should take less processing time than volume visualization.   

The implementation of surface visualization can be broken into five steps shown in the 

figure below. Each step is performed on the image stack created by the OCM in succession.  

 

Figure 3 Process steps for surface visualization 

The first step is for the user to choose a region of the image stack to turn into the model. This is 

necessary if the user wants to only visualize part of the object and not the whole object. To do 

this the user will be given an en-face image from the stack at a desired depth and will then input 

the desired region into an input box. To input the region the user will give the starting and ending 

x, y, and z coordinates of the region. The data is scaled two times. The first time it is scaled 
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logarithmically because the range of the data is between zero and over a million. Twenty times 

the log based ten was used to scale the data because it brought the data down to values between 

approximately 0 and 100. After the data is scaled logarithmically it is then scaled linearly 

between 0 and 255 because these are standard pixel values.  To filter data the data a three-

dimension center weighted low pass filter was chosen. The figure below shows the low pass 

filter.   
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Figure 4 3D center weighted low pass filter used for smoothing 

The low pass filter above is broken into three matrices each matric represents a consecutive layer 

of the filter in the x-y plane. This filter was chosen after some preliminary testing because the 

final surface visualization of the center weighted filter was of similar quality to the other tested 

filters, but the computation time of the visualization was much better for the center weighted 

filter. For the same thresholding, the visualization computation time after the center weight filter 

was 13 minutes while visualization computation time was 15 and 16 minutes for the other filters 

respectively. The next step to visualize the surface of the object is to binarize the image stack, so 

the image stack consists of pixels that are either a part of the object or part of the background. To 

threshold the images three techniques were considered. The final choice of thresholding was to 

allow the user to set a lower and upper threshold so only pixels between the two values were 

considered part of the object. It was chosen because it had similar computation times as the other 

thresholding choices but allowed the user a greater flexibility in what to consider part of the 

imaged object.  For instance, an air bubble may cause a bright patch in the image which if only 

using lower thresholding would be considered part of the object, but when upper thresholding is 
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removed. To create the surface of the object, the Matlab isosurface function is used. It is used 

because by using Matlabs parallel computing tool box isosurface can be optimized to run on 

multiple cores of the computers GPU to decrease the computation time.  

 Part of the visualization design is choosing a new GPU for the computer running the 

software for the OCM. The current GPU is not fast enough for the desired computation times so 

a new GPU is necessary. The new GPU needed to be a Nvidia GPU so that it is runs CUDA, 

Nvidia’s parallel computing language, and is supported by Matlabs parallel computing toolbox. 

The GPU was chosen off a list provided by Matlab and Nvidia with the budget in mind.  

Ultimately the Nvidia EVGA GeForce GTX 1060 GPU was chosen [8]. A student research grant 

will provide 189 dollars while the electrical engineering department will provide 89 dollars.  

6. Preliminary Testing Results 

Because the OCM has not been built yet and will be built over winter break the 

preliminary tests completed during the fall term were based around surface visualization of OCT 

data. Because the output the optical coherence tomography is similar to the data from an optical 

coherence microscope the OCT data makes a suitable replacement for designing a prototype 

system to create surface visualizations of the data. The OCT provided data from a chicken 

embryo and a nylon screw.  

To find the best filter to use as a low pass filter and smooth the data with, the time it took 

for the computer to create the surface visualization was used. Figure 5 below shows the time it 

took for the computer to create a surface visualization for each filter. The Gaussian filter had a 

standard deviation of 0.5 and the threshold value of the binarization used for each filter was 0.5 

of the maximum pixel value. The OCT data from the chicken embryo was used for these tests. 
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Figure 5 Graph of filters and their computation time in minutes 

Based on the results from the experiment the center weighted filter was the best filter to use due 

to its lower computation time. After finding the best filter to use, different thresholds were tested 

to see how it affected the output visualization and computation time. Figure 6 shows the how the 

surface visualization computation time changes as the binarization threshold changes. A center 

weighted filter was used as the low pass filter for each test and only images in the image stack 

that were between 1 and 55 in the z direction were used. The OCT data from the chicken embryo 

was used for these tests. 

 

Figure 6 graph of threshold versus computation time for a center weighted filter 
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From the tests we found that thresholding with 0.4, 0.5, and 0.6 had the best final surface 

visualization clarity based on how they looked. Between the three that contained the best surface 

visualization a threshold of 0.5 took the least amount of time to create.  

After deciding on threshold levels and filter type, the surface visualization of the OCT 

chicken embryo data was created. Figure 7 shows an image of the chicken embryo after being 

logarithmically then linearly scaled and figure 8 shows the embryo after being filtered with the 

center weighted low pass filter. Figure 9 shows an image of the embryo after a threshold of 0.5 

was applied and the image matrix was binarize. Figure 10 shows the surface visualization of the 

embryo.  

 

     

Figure 7: Image of chicken embryo after scaling    Figure 8: Image of chicken embryo after filtering 

 

Figure 9: Binarized image of chicken embryo 
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Figure 10: 3D visualization of chicken embryo 

The OCT chicken was a hard data set to use as a test for the surface visualization because it was 

not a known object. So for the next surface visualization test a nylon screw was imaged by the 

OCT and the surface visualization was made in both ImageJ and with the prototype software.  

 

  

Figure 11 Nylon screw surface visualization using ImageJ 
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Figure 12 Nylon screw surface visualization using Matlab 

Figure 11 shows the surface visualization of the nylon screw with ImageJ and figure 12 shows 

the surface visualization of the same data set with the Matlab prototype. There was not enough 

time to apply the Hausdorff distance to the two surfaces but based on how they look they are 

similar.  

7. Implementation Schedule 

By the first week in winter term hopefully the physical OCM will be built. If it has been 

built the goal for that week is to implement the software required to control the stage of the 

microscope and capture images using the microscope. For the second week the goal is to fix any 

bugs found in week one and be able to combine multiple images of a certain depth into an 

individual en-face image of a desired depth using interference. By week three the microscope 

should be able to create an image cube of an object, so during week three the OCM data will be 

tested to the standards outlined in the design requirements. By week 4 the microscope should be 

able to image an object so in the following weeks the project will be focused on 3D visualization. 

During week 4 hopefully the graphics card will have arrived, and the 3D visualization code can 

be implemented in parallel. For week 5 continue working on 3D visualization and fixing any 

bugs in it along with beginning to develop the code required to compare the Matlab visualization 
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to the ImageJ visualization. The goal for week 6, is to implement user friendly interfaces to the 

Matlab software. Weeks 7, and 8 will be testing the final image quality, 3D visualizations, and 

user interface, along with fixing any bugs that come up. Weeks 9 and 10 will focus on final 

presentation and the final write up of the capstone project.  
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9. Appendix 

9.1 Prototype code for surface visualization 

function filtered_model(filter) 
%loads the desired OCT/OCM data set 
load ('aug06_embryo5_cmodeCube1.mat'); 
%crops the image cube to the desired region 
cmode_cube_cropped = cmode_cube(:,:,1:55); 
%gets teh dimensions of the data set 
imSize = size(cmode_cube_cropped); 
%creates a matrix to hold the binary images 
binary_images = zeros(imSize(1),imSize(2), imSize(3)); 
%the folllwing line applies a log and linear scale to the cube 
cube_scaled = rescale(20*log10(cmode_cube_cropped), 0, 255); 

  
% applies the filter to the scaled cube 
cube_filtered = convn(cube_scaled, filter, 'same'); 

   
% binarizes each layer of the cube 
for plane = 1:imSize(3) 

    plane_scaled  = (cube_filtered(:,:,plane));  
   images(:, :, plane) = plane_scaled;  
    bin_im=imbinarize(plane_scaled/255, 0.5); 
   binary_images(:, :, plane) = bin_im;  

end 
  

% creates the surface visualization and times how long it takes 
figure; 
tic 
isosurface(binary_images) 
toc 

end 
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9.2 Prototype code for upper and lower thresholding 

%takes the image cube, a lower threshold, and upper threshold and  
%binarizes the data 
function bin_im_cube = binarize_im_cube(im_cube, low_thresh, upper_thresh) 
 
imSize = size(im_cube); 
bin_cube = zeros(imSize(1),imSize(2), imSize(3)); 
for x = 1:imSize(1) 
    for y = 1:imSize(2) 
         for z = 1: imSize(3) 
              if low_thresh < im_cube(x, y, z) && im_cube(x,y,z) < upper_thresh 
                   bin_cube(x, y, z) = 1; 
              else 
                   bin_cube(x, y, z) = 0; 
              end 
          end 

end      
end 
bin_im_cube = bin_cube; 
end 


