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1 Report Summary

This project examined the capabilities of electronic counter-countermeasures and high-resolution

imaging of a chaos-based FM radar. Four chaotic systems, the Moore-Spiegel system, the Lorenz

system, the ACT system, and the Rossler system were used in simulations as transmitted radar

signals. Characteristics for each of the signals were considered, including the power spectrums

and the autocorrelations. To demonstrate the chaos-based FM waveforms’ electronic counter-

countermeasure capabilities, a smart jammer was implemented and each of the CBFM waveform’s

ability to counteract the jammer was observed. To assess the high-resolution imaging capabilities

of each chaotic system, the ambiguity function, signature analysis with various noise levels, and

entropy analysis were implemented. It was observed that chaos-based FM signals can be used to

counteract a jammer by increasing the bandwidth of the signals, and that each chaotic system was

capable of generating high-resolution images of a complex target.

2 Introduction

Radar, which stands for radio detection and ranging, has played a fundamental role in modern

technology. It has been implemented in various applications such as the military, climate moni-

toring, traffic surveillance, and self-driving cars. An essential application in a military setting is

high-resolution imaging of a target. For the radar to generate a high-resolution image of the tar-

get, multiple points of the target in close proximity must be distinguishable from each other, and

none of the points should be overlapping [13]. A significant determinant of the high-resolution

capabilities of a radar lies in the properties of the signal that is transmitted. To increase the reso-

lution, small pulse duration and a high bandwidth are required [13]. For this reason, FM signals

are used in radar as they possess higher bandwidths compared to other forms of modulation, such

as amplitude-modulated waveforms. Because chaotic systems possess noise-like behavior, and

in turn, possess high bandwidths, there has been a high level of interest in implementing chaotic

systems in recent radar research [1].
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A significant issue found in a monostatic radar, a configuration where the transmitter and re-

ceiver are collocated, is that it is vulnerable to jamming, or electronic countermeasures [17]. In

the case of a smart jammer, the jammer can demodulate a transmitted signal to attain an estimate

of the instantaneous frequency of the transmitted signal [8]. It can then recreate the FM signal

using the demodulated signal as instantaneous frequency. In the presence of a jammer system, the

radar will assume that the signal was reflected off of a target, thereby creating a false alarm. To

prevent the jammer from impacting the performance of the radar, a signal in which a jammer is

unable to accurately recover its instantaneous frequency is required. With the introduction of a

chaos-based waveform, it is hypothesized that the jammer may be counteracted due to the high

bandwidth of a chaotic waveform. Thus, the primary objective of this project is to examine the

ability of a chaos-based radar to counteract a jammer, or to observe the chaotic radar’s electronic

counter-countermeasure (ECCM) capabilities.

Another objective is to determine whether it would be possible for the use of chaotic systems in

a monostatic radar setting to generate high-resolution images of a target. If the chaotic systems are

capable of counteracting a jammer but were not capable of high-resolution imaging, the systems

would be ineffective.

The remainder of the report is divided as following: the background describes the previous re-

search of chaotic systems in radar, as well as any potential societal impact the results of the project

could cause. Then, the components of the project design are discussed. The mathematical repre-

sentation of a transmitted radar waveform and a received radar waveform are provided. The most

commonly used waveform in modern radar, the linear FM waveform, is discussed. It is compared

to the focus of this project, the chaos-based FM waveform. The preliminary methodology discusses

the properties of the chaotic systems used in this project, and how FM waveforms were generated

using chaotic systems. The section called characteristics of CBFM waveforms described the ini-

tial signal processing techniques conducted on each CBFM waveform, and how they are used to

hypothesize results of performance in high-resolution imaging and its ECCM capabilities. Then,
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the implementation of a smart jammer and the implementation of high-resolution imaging are dis-

cussed. The results of these tests are discussed in the performance estimates and results section.

Finally, conclusions are drawn in the discussion, conclusion, and recommendations section.

3 Background

The use of discrete chaotic maps and continuous chaotic waveforms as FM signals have gained

attention in recent radar research. The idea and application of discrete chaotic signals in radar

systems was introduced in [3] and [2]. Following this, discrete chaotic maps such as the Bernoulli,

Tent, Logistic, and Quadratic discrete maps were analyzed. Through various simulations including

autocorrelations, the ambiguity function, and entropy analysis of each discrete waveform, it was

proved that chaotic signals are desirable for high-resolution radar imaging [6]. Much work has

also been studied on continuous CBFM waveforms. Wideband FM signals were created with the

Lorenz chaotic system as the signal’s instantaneous frequency. Time autocorrelations displayed

that the FM signal using the Lorenz chaotic system has high range resolution for zero Doppler

shift [7]. Other research has compared the spectral properties of FM signals using the Lorenz

chaotic system and the Lang-Kobayashi chaotic system [5]. It was found that the spectrums of

these signals followed Woodward’s theorem in that the shape of the spectrum of a random FM

signal resembled the shape of the probability density function of the instantaneous frequency of

the signal. It was also found that the signals were candidates for high resolution imaging and that

the achievable range resolution is higher for continuous chaotic systems than signals generated

from discrete maps. It was left as a question to whether CBFM waveforms could have potential in

anti-jamming [5].

The societal impact this will make is that it furthers the research of chaotic radar. If implemented,

it could greatly reduce the cost of radar as the cost to ensure the linearity of a transmitted waveform

is unnecessary with chaos [10]. The results may impact future radar research and design if it can

be shown that chaotic waveforms are able to evade a jammer. In terms of ethics, there is little
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negative that could result from this project. In general, the radar system emits electromagnetic

radiation which has negative effects on the environment. Radars are also capable of generating

electromagnetic interference to other electronic equipment in a close vicinity [4]. This could be

harmful to other systems if the radar were to act as an unintentional jammer for nearby technology.

4 Components of Project Design

4.1 The Transmitted Signal

The first component of the project was designing a transmitted radar waveform. The most basic

component of the transmitted FM waveform is a baseband sinusoidal waveform given as [13]:

s(t) = A(t)cos(θ(t)) (1)

The generalized angle of the waveform over time is given by θ(t), and the amplitude is given

by A(t). For FM signals, A(t) is kept at a constant value over time. The generalized angle is given

as:

θ(t) = 2π fct +φ(t) (2)

Here, fc is the carrier frequency and φ(t) is the instantaneous phase. The carrier frequency is

to move the signal to a different frequency band. For each of the simulations conducted the carrier

frequency was assumed to be 200 MHz. Considering a baseband signal where fc = 0, the resulting

waveform is expressed as:

s(t) = Acos(φ(t)) (3)

In FM, the frequency of the waveform is determined by the waveform’s instantaneous fre-

quency which is given as the derivative of the generalized angle. For a baseband signal the instan-
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taneous angular frequency, wi(t) is given as:

wi(t) =
dθ

dt

wi(t) =
d(φ(t))

dt

(4)

The instantaneous angular frequency and the instantaneous frequency are related by wi = 2π fi,

and thus the instantaneous frequency is given as:

fi(t) =
1

2π

d(φ(t))
dt (5)

The instantaneous phase can then be written in terms of the instantaneous frequency, φ(t), as

shown below:

φ(t) = 2π

∫ t

0
fi(λ )dλ (6)

The relationship between the instantaneous phase is the basis for generating FM waveforms. In

the FM waveform, the instantaneous frequency is proportional to the modulating waveform [11],

x(t), as shown in Equation (7).

fi(t) = Kx(t) (7)

Where K is a modulation index of the signal. The modulation index is essential in determining

the bandwidth of the signal. By increasing the modulation index, the bandwidth of the signal is

increased. By substituting the instantaneous frequency in Equation (6), the instantaneous phase is

expressed as:

φ(t) = 2πK
∫ t

0
x(λ )dλ (8)

Finally, an FM waveform can be expressed as:
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sFM(t) = Acos(2πK
∫ t

0
x(λ )dλ ) (9)

4.2 The Received Signal

The above-generated FM waveform can be efficiently transmitted for tracking the target. In the

presence of the target, the transmitted waveform is reflected back to the receiver. It is assumed that

the received signal is an attenuated α , time delayed τ , and Doppler frequency shifted fD replica of

the transmitted waveform. Mathematically it is expressed as (10). The delay in time is due to the

time the waveform takes to travel from the radar towards the target and back to the receiver. The

shift in Doppler frequency is due to the movement of the target [16]. The received signal is given

as:

r(t) = αs(t− τ)e j2π fDt (10)

For simplicity, the received waveform is assumed to have an attenuation factor α = 1. Figure

1 shows an illustration of the relationship between the distance of a target and the time it takes for

the received signal to return to the receiver.

Figure 1: Total Distance from Radar to Target Block Diagram

Assuming that the target is at a range r meters from the transmitter, the signal must propagate

a distance of r meters and reflect back a distance of r meters. Note that the FM wave travels

approximately at the speed of light, c = 3.0× 108m/s. Hence, the time it takes for the signal to

reflect off of a target and return to the antenna is given as:

τ =
2r
c

(11)
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To calculate the Doppler frequency of a signal, the following equation is used.

fD =
2v
λ

(12)

Where λ = c/ fc is the wavelength of the waveform in meters, and v is the velocity profile of

the target. With the ability to calculate the time delay and Doppler shift of the target, the receiver

can find other properties of the target. The receiver can locate both the line-of-sight distance i.e.

the range, and the orthogonal distance i.e. the cross-range, of a target.

4.3 The Linear FM Waveform

The most commonly used radar waveform is the linear frequency modulated (LFM) waveform.

As the name suggests, its instantaneous frequency changes linearly as a function of time. This

linearity can have either a positive or a negative slope. The instantaneous frequency at any given

time is:

x(t) = t (13)

Then, the LFM signal is given as:

sLFM(t) = Acos(2πK
∫ t

0
λdλ ) (14)

One of the disadvantages of the LFM waveform is that it cannot be used for high-resolution

radar imaging. A linear FM waveform is only able to extract the range information of a target.

In addition, its ambiguity function yields a range-Doppler coupling which is not desirable for

high-resolution imaging. In contrast, noise or noise-like waveforms yield a thumbtack ambiguity

function that is desirable for high-resolution radar imaging.
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4.4 The Chaos-Based FM Waveform

Chaos-based FM waveforms are generated using chaotic state variables. Chaotic waveforms are

aperiodic with noise-like behavior, causing the signals that implement them to possess a high band-

width. This is a desirable quality in generating high-resolution images as the range resolution is

dependent on the bandwidth of the signal. Additionally, this is desirable for ECCM capabilities as

a jammer concentrates its power in a narrow range of frequencies. Chaotic systems are also deter-

ministic meaning that they are feasible to implement with electronic circuits [10]. There are various

types of chaotic systems in both the continuous and discrete domains. For a continuous chaotic

waveform, the system can be represented using nonlinear differential equations. Each differential

equation, or state-variable, corresponds to a waveform where the amplitude of the waveform is a

voltage as a function of time. A discrete map is given by iterative difference equations where the

voltages are generated, not as a function of continuous time, but rather as a function of sampling

intervals.

5 Preliminary Methodology

5.1 The Chaotic Systems

The chaotic systems used in this work are the Moore-Spiegel system, the Lorenz system, the

ACT system, and the Rossler system. Each system is represented by three state variables x(t),

y(t), and z(t), all of which are obtained by integrating nonlinear differential equations. They are

continuous systems, as opposed to previously implemented discrete maps such as the Bernoulli,

Tent, Logistic, and Quadratic maps. The Moore-Spiegel system is given as [14]:

dx
dt

=Cy

dy
dt

=Cz

dz
dt

=C(−z− (T −R+Rx2)y−T x)

(15)
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Where the parameters were given as T = 6, R = 20. The Lorenz system is given as [14]:

dx
dt

=Cσ(y− x)

dy
dt

=C(x(ρ− z)− y)

dz
dt

=C(xy−β z)

(16)

Where the parameters, σ , ρ , and β are equal to 10, 28 and 8/3. The ACT system is given as

[14]:

dx
dt

=Cα(x− y)

dy
dt

=C(−4αy+ xz+µx3)

dz
dt

=C(−δαz+ xy+β z2)

(17)

Where α = 1.8, β = -0.07, δ = 1.5, and µ = 0.05. The Rossler system is given as [14]:

dx
dt

=C(−y− z)

dy
dt

=C(x+ay)

dz
dt

=C(b+ z(x− c))

(18)

Where a = 0.2, b = 0.5, and c = 5.7.

The chaotic systems are sensitive to their initial conditions x(0), y(0), and z(0). If two FM

waveforms are generated with the same system, but the initial condition is varied slightly among

each waveform, the two waveforms will appear to be very different. Hence, correlation between

these two generated FM waveforms will be very low. The initial conditions were provided by [14],

and are shown in Table 1.

Multiple realizations of CBFM waveforms were generated by changing the initial conditions.

These initial conditions were changed with a random number in the range of
[
− 1

1000 ,
1

1000

]
. These

multiple realizations are necessary to conduct Monte-Carlo simulations to observe the statistical

behavior of each waveform.
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Chaotic System Initial Conditions
Moore-Spiegel x = 0.1, y = 0, z = 0

Lorenz x = -5.6599, y = -11.1608, z = 7.5402
ACT x = 3.0191, y = 1.3046, z = 3.032

Rossler x = -4.3758, y = -2.6917, z = 0.0194

Table 1: Initial Conditions for Generating Chaotic Waveforms

5.2 Compression Factors

The compression factors, or C, in each set of equations, were significant in ensuring the chaotic

state variables were all oscillating at a similar rate. The final values chosen are shown in Table

2. Modifying the compression factors is feasible using electronic hardware. Assuming the circuit

for a chaotic waveform is constructed with an op-amp, the compression factor can be controlled

by the capacitance of the circuit. As one decreases the value of the circuit’s capacitance, one can

increase the compression factor of the voltage waveform. With an increased compression factor,

the oscillation of the waveform is increased.

Chaotic System Compression Factor
Moore-Spiegel 1.3 x 107

Lorenz 5.0 x 106

ACT 1.5 x 107

Rossler 2.5 x 107

Table 2: Finalized Compression Factors

5.3 Generating the Transmitted Waveforms

For each of the systems, an FM signal was generated with the system’s x-state variable. To avoid

spectral aliasing, the x-state variables are first normalized to the range of [-1,1]. The amplitude A

of each FM signal, represented by Equation (9), was set to 1V. The pulse width of each waveform

was set to 30 µs. The sampling time was considered to be 1 ns. Figure 2 displays the instantaneous

frequency for each of the transmitted signals.
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Figure 2: Voltage of x-state variables over time for each chaotic system

6 Characteristics of CBFM Waveforms

After generating transmitted FM waveforms using chaotic variables shown in Figure 2, we com-

puted the power spectrums and autocorrelations of the CBFM waveforms.

6.1 The FM Waveforms in the Frequency Domain

The power spectrum is used to determine the FM waveforms’ distribution of power in the fre-

quency domain. It is calculated using the squared magnitude of the Fourier Transform of a wave-

form as given below:

S( f ) = |F{s(t)}|2 (19)

A uniformly spread spectrum is desired for high-resolution imagery and ECCM capabilities.

A wideband spectrum results in a sharp autocorrelation, which is necessary for high-resolution

imaging. A wideband spectrum is also indicative of better ECCM capabilities because a jammer

allocates all of its power within a narrow band of frequencies [16]. The power spectrums were

calculated and averaged over 100 realizations where each realization has a slightly varied set of
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initial conditions. After calculating each spectrum, its magnitude is normalized in the range of [0,

1]. The power spectrums of each chaotic system are shown in Figure 3.

Figure 3: Power Spectrums of the CBFM Signals over 100 Monte-Carlo Simulations

A uniform distribution of power is shown in the spectrums of ACT and Rossler, so it is expected

that they have better performance in terms of imaging and ECCM capabilities. The Lorenz system

has most of its power concentrated near zero frequency and 300 MHz. This indicates it would

not perform as well as the previous two systems. The Moore-Spiegel system has its power mainly

concentrated at DC, so it is expected to have the least performance compared to all other systems.

6.2 Autocorrelations

Cross-correlation is used to correlate the transmitted waveform with the received waveform. A

special case of cross-correlation is autocorrelation that is used to correlate the signal by itself. It

is used to test the capability of the transmitted waveform in detecting the target and to signify the

high-resolution capability of the transmitted waveform. It is mathematically defined as (20):

Rss(τ) =
∫ +∞

−∞

s(t)s(t− τ)dt (20)
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The result of the autocorrelation is a peak, or a spike in magnitude, at some time delay τ . This

is a fundamental component of how the radar processes the received signal because the receiver

uses a series of correlations to determine the time delay associated with the target.

Ideally, there should only be one peak at the time delay τ of the waveform, and the autocorre-

lation would resemble a Dirac delta function. However, this is not practically possible. Instead a

mainlobe peak at τ is surrounded by sidelobe peaks. It is a goal in radar design to reduce the levels

of the sidelobes. For high-resolution imaging, the sidelobes must be below the level of -13.33

dB. This is because the typical radar waveform employs linear FM, and the spectrum of a linear

FM waveform is approximated to have a rectangular shape. As the autocorrelation is the inverse

Fourier transform of the spectrum, the autocorrelation for an LFM waveform is approximated to

be a sinc function [12]. The first sidelobe of a sinc function occurs at t = 3π

2 , and sincdB(
3π

2 ) =

-13.33 dB. Figure 4 displays that each of the systems sidelobes are below -13.33 dB.

Figure 4: Sidelobe levels from Autocorrelations of CBFM Waveforms

As expected based on the power spectrum, the waveform that used Moore-Spiegel had the

highest sidelobe level and the ACT system had the lowest sidelobes.

Additionally, the autocorrelation determines the range resolution of the image generated by the

radar. Range resolution is an ability to determine two closely spaced targets. Range resolution of

a monotone signal depends on the pulse width, whereas for the modulated signal it depends on the
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bandwidth of the signal [16]. Range resolution is calculated as [12]:

∆r =
c

2BW
(21)

Where c is the speed of light, and BW is the bandwidth of the signal. Consequently, a wideband

signal can have a high range resolution.

An estimate of the signal’s bandwidth can also be found using autocorrelation. For a modulated

signal, the bandwidth is obtained as the inverse of the autocorrelation mainlobe width. The main-

lobe width of the autocorrelations at -3 dB for each of the CBFM waveforms is shown in Figure

5.

Figure 5: Mainlobes of waveforms at -3dB

The time lag for all of the waveforms was roughly 0.3 ns on each side, or 0.6 ns in total. The

bandwidth is the inverse to the time lag, or 1
∆t = 1

0.6ns = 1.5 GHz. With a signal bandwidth of 1.5

GHz, the range resolution is 0.1 m.

7 Implementation of a Smart Jammer

To examine the ECCM capabilities of each waveform, a smart jammer based on [8] was imple-

mented. This type of jammer demodulates the transmitted signal using the signal’s In Phase and
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Quadrature components to acquire the signal’s instantaneous frequency. A block diagram for this

demodulation technique, I/Q demodulation, is shown in Figure 6.

Figure 6: I/Q Detector Block Diagram

The hI(t) and hQ(t) components are derived as:

hI(t) = r(t)×2cos(2π fct)

= Acos(2π fct +φ(t))×2cos(2π fct)

=
1
2
[2Acos(2π fct +φ(t)+2π fct)+2Acos(2π fct +φ(t)−2π fct)]

= Acos(2(2π fct)+φ(t))+Acos(φ(t))

(22)

hQ(t) = r(t)×−2sin(2π fct)

= Acos(2π fct +φ(t))×−2sin(2π fct)

=
1
2
[−2Asin(2π fct +φ(t)+2π fct)+2Asin(2π fct +φ(t)−2π fct)]

=−Asin(2(2π fct)+φ(t))+Asin(φ(t))

(23)

The resulting spectral representation of the hI(t) and hQ(t) waveforms display frequency com-

ponents at +2 fc, -2 fc, and the original frequency centered at 0 fc. The hI(t) and hQ(t) frequency

spectrums for the ACT system is shown in Figure 7. The blue plot indicates the hI(t) component

and the black plot indicates the hQ(t) component.

In this simulation, the carrier frequency was 200 MHz so there were frequency components at

400 MHz, -400 MHz, and 0 MHz. To remove the components located at 400 MHz and -400 MHz,

a fifth order Butterworth low pass filter with a cutoff frequency of 400 MHz was implemented. The

resulting spectrums of the I(t) and Q(t) components are shown in Figure 8. The blue plot indicates
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Figure 7: Jammer Extracted hI(t) and hQ(t) Components of ACT System

the I(t) component and the black plot indicates the Q(t) component.

Figure 8: Jammer Extracted I(t) and Q(t) Components of ACT System

After filtering, the resulting I(t) and Q(t) waveforms represent cos(φ(t)) and sin(φ(t)) respec-

tively. By taking the arctangent of these two waveforms, the jammer can extract an estimate of the

instantaneous phase as shown in Equation (24).
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φ(t) = tan−1
(

Q(t)
I(t)

)
φ(t) = tan−1

(
sin(φ(t))
cos(φ(t))

)
φ(t) = tan−1 (tan(φ(t))

(24)

Then, an estimate of the instantaneous frequency was found from the phase with Equation

(5). With an estimate of the instantaneous frequency, the jammer modulates the instantaneous

frequency and transmits an FM waveform. If the recovered instantaneous frequency is accurate

in comparison to the actual instantaneous frequency of the transmitted signal, the radar perceives

the signal to be reflected off of some target thereby creating a false alarm. The radar has no

way of discriminating between an actual echo from a target and a waveform originating from

the jammer. A radar could avoid the effect of a jammer if the difference between the jammer’s

instantaneous frequency and the actual instantaneous is great. To observe if the CBFM waveforms

could avoid the jammer’s ability to recover the instantaneous frequency, each CBFM waveform

was tested under the smart jamming model. The root mean squared error was taken between the

actual instantaneous frequency and the jammer’s recovered instantaneous frequency over various

iterations of testing. In each iteration, the bandwidth of each system was increased by increasing

the modulation index of the signal. The first minimum bandwidth for each system was around

15 MHz, and the final bandwidth tested was around 3 GHz. For each bandwidth, Monte-Carlo

simulations were conducted, and the results were averaged over 10 trials.

The RMSE results between the jammer’s recovered instantaneous frequency and the actual

instantaneous frequency of the transmitted signal are shown in Figure 9.
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Figure 9: RMSE Between Actual and Recovered Instantaneous Frequency

When the modulation index is in the range from 0.01 to 0.2, the bandwidth is in the range of

15 MHz to 350 MHz and the jammer is able to recover the signal’s frequency with little error.

When the modulation index is increased to 0.5, or the bandwidth is approximately 1.5 GHz, the

recovered frequency began to differ significantly from the actual frequency. As the bandwidth

increased beyond this point, the level of error continues to increase. The difference in actual

against recovered instantaneous frequency is shown in Figure 10.

Figure 10: Actual and Recovered Instantaneous Frequency at K=0.5
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Though all of the systems were able to counteract the jammer, the Moore-Spiegel system had

the greatest level of error compared to the rest of the systems. The reason for this is currently under

investigation as the Moore-Spiegel CBFM was expected to perform worse than the other systems.

8 Implementation of High-Resolution Imaging

A complex target was then considered to demonstrate the image resolution produced by the

chaotic waveforms. Each point on the target was considered as a hotspot, where there is a time

delay and Doppler shift corresponding to each point. The received signal for the complex target

is a summation of reflections from all of the hotspots representing the contour of the target. The

target chosen was a full scale 73x65 meter Boeing 737 airplane. The dimensions of the target are

shown in Figure 11.

Figure 11: X and Y Dimensions of Complex Target
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8.1 Ambiguity Functions

The ambiguity function was implemented to calculate the time delay and the Doppler frequency

shift at the origin τ = 0 s and fD = 0 Hz [15]. The ambiguity function employs a series of cor-

relations between the transmitted signal (reference) and the received signal, which is a delayed

and Doppler-shifted replica of the transmitted signal. This process is also called matched filtering.

When the Doppler frequency of the reference signal matches the Doppler frequency of the received

signal, a peak occurs at the corresponding time delay and Doppler shift. The ambiguity function is

given as:

χ(τ, fD) =

∣∣∣∣∫ ∞

−∞

s(t)s(t− τ)e j2π fDtdt
∣∣∣∣2 (25)

The ideal ambiguity function should take on the shape of a Dirac delta function at the origin

[9]. Because the Dirac delta function is not practically possible to achieve, the ambiguity function

of a thumbtack shape is desirable.

The results of the ambiguity function for each system are shown in Figure 12. The magnitude

value of the mainlobe peak is 0 dB, which occurs at the origin. The sidelobes surrounding the

mailobe is below -13.33 dB. These results indicate that each chaotic system is capable of high-

resolution imaging.
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Figure 12: Results of the Ambiguity Function with Time τ = 0 s and fD = 0 Hz

8.2 Signature Analysis

To implement signature analysis, first, a transmitted waveform was generated with a pulse width

of 30µs and a sampling time of 1 ns. The profile of the airplane was then set up by converting

the X and Y coordinates of 23 hotspots in Figure 11 to their respective time delays and Doppler

shifts. The airplane was assumed to be 1 km away from the radar. The additional line-of-sight

distances of each hotspot were found to calculate the hotspot’s delay using Equation (11). The

velocity profile of each hotspot was calculated to estimate the Doppler frequency using Equation

(12). The velocity profile of the target is given by

v = Ωrc (26)

Where rc is the cross-range, or orthogonal distance from the target to the radar. Ω is the target’s

total angular speed in rad/sec given by:

Ω =
∆θ

Tint
(27)
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Where Tint is the integration time or pulse width of the signal, and ∆θ is the target’s total

angular rotation given by:

∆θ =
BW
fc

(28)

The received waveform can now be modelled as the sum of reflections from each hotspot with

the corresponding time delay and Doppler shift. The received waveform is given as:

r(t) =
N

∑
k=1

s(t− τk)e
j(2π fct+2π fDk t) (29)

Where N represents the total number of hotspots.

The received signal is now processed to extract the range and cross range information of the

target. First, a matched filter bank was implemented such that each filter has a response identical

to the reference but tuned to a particular Doppler frequency. For the airplane as a target, the

range of these Doppler frequencies was considered to be -100 fD to 100 fD where fD = 1
Tint

= 1
30µs

= 33 kHz. After the received signal is driven through these matched filters, a peak is observed

whenever the reference signal’s Doppler frequency is equivalent to one of the received signal’s

Doppler frequencies. The peak is displayed at the delay and the Doppler frequency of that hotspot.

After driving the reference signal through each filter, the image of the target is generated. A

block diagram of the signature analysis is shown in Figure 13. In the Figure, r(t) represents the

received signal, and each f̂D represents the Nth reference signal tuned at their individual Doppler

frequency ˆfDK . Each row in the resulting signature analysis is given by a correlation between the

received signal and the reference signal. For signature analysis, 10 Monte-Carlo realizations were

conducted for each chaotic system.

The signature analysis was converted to the Decibel scale using 10×log10(Signature Analysis).

The noise floor was set at -20dB.
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Figure 13: Block Diagram of Signature Analysis

8.3 Signature Analysis with Noise

In real time scenarios, the received signal is corrupted with noise. The actual received waveform

is given as:

r(t) = s(t− τ)e j2π fDt +η(0,σ2) (30)

Where η(0,σ2) is additive white Gaussian noise with a mean of 0 and variance σ2. We illus-

trate the effects of noise on high-resolution capability of the radar. To implement this, the power

of the transmitted signal and the power of noise were derived. As the amplitude of an FM signal is

a constant with A volts, its average power is given as:

Pavg =
A2

2
(31)

As A was set to 1V, the power of the transmitted signal was 0.5 W.

Because the noise was assumed to be additive white Gaussian noise, its power is given as the

expected value of the random variable. The derivation for the expected value of the Gaussian noise

is given as:
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Pnoise = E[X2] =
∫ +∞

−∞

fx(x)dx

=
∫ +∞

−∞

x2 1√
2πσ2

e
−x2

2σ2 dx

=
1√

2πσ2

∫ +∞

−∞

x2e
−x2

2σ2 dx

=
1√

2πσ2
[x(−σ

2e
−x2

2σ2 −
∫
−σ

2e
−x2

2σ2 )dx]

=
−σ2
√

2πσ2
[xe

−x2

2σ2 ]

∣∣∣∣∣
+∞

−∞

+
σ2
√

2πσ2

∫
e
−x2

2σ2 dx

=
σ2
√

2πσ2
[2
∫

e
−x2

2σ2 dx]

=
σ2
√

2πσ2
(
√

2πσ2)

= σ
2

(32)

Thus, the power of the noise signal was a function of its variance, σ2. Various noise levels

were simulated by modifying the variance of an additive white Gaussian noise waveform. To find

the variance needed for a specific SNR level, the standard deviation, or square root of the variance,

was expressed as a function of the power of the signal and the desired SNR level. This derivation

is shown in Equation (33).

10log10
Pavg

σ2 = SNRdB

log10
Pavg

σ2 =
SNRdB

10
Pavg

σ2 = 10
SNRdB

10

σ
2 =

Pavg

10
SNRdB

10

σ =

√
Pavg

10
SNRdB

10

(33)

The SNRs that were used in imaging were: -5 dB, -10 dB, -15 dB, -20 dB.
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8.4 Entropy Analysis

Entropy analysis was used to measure the amount of information lost in signature analysis with

different levels of noise added on to the received signal. Ideally, each pixel of the signature analysis

should be a 0 or a +1 depending on the presence of a hotspot. However, there is always additional

sidelobes that occur due to the presence of noise and any energy spillover in the sidelobes of the

correlations. Thus, entropy of the image is calculated to quantify the effect of noise and energy

spillover for each radar waveform in signature analysis. Entropy is calculated by:

H =
−1
mn

m

∑
i=1

n

∑
j=1

I(i, j)log2(I(i, j)) (34)

Where I is the image, i and j represent each row and column iterated over the total m rows and

n columns of the image. The resulting entropy should theoretically be at 0 if the signature anal-

ysis was perfectly discretized at values of 0’s and 1’s. However, due to the impacting conditions

mentioned previously, this is not possible. By finding the entropy for each system, it is possible to

determine which of the systems were least affected by noise and had the least amount of energy

spillover. For each system, entropy is calculated over SNR levels from 0 dB to -40 dB, and were

averaged over 5 iterations.

9 Performance Estimates and Results

9.1 Signature Analysis Results

The resulting signature analysis for each system is given in Figure 14.
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Figure 14: Signature Analysis Results with SNR = 0dB

Each system possesses high-resolution imaging capabilities. All of the hotspots were distin-

guishable from each other, and none of the hotspots were overlapping. Also, the range resolution

observed met the expected value of 0.1m. The signature analysis using the ACT system over

different SNRs is shown in Figure 15.
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Figure 15: ACT Signature Analysis with SNR = -5dB, -10dB, -15dB, -20dB

As the power of the noise was increased, the appearance of the hotspots became progressively

less visible. Figure 15 shows that each hotspot is still visible when the SNR is -15 dB. After this

point, the hotspots became indistinguishable from the noise.

9.2 Entropy Analysis Results

The result of the entropy is shown in Figure 16.

Figure 16: Entropy Analysis of Waveforms at SNR levels from -40 dB to 0dB
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All of the systems demonstrated similar entropy values over various SNR levels, and each

approaches a greater level of entropy as the SNR decreases.The Moore-Spiegel system maintained

the least amount of entropy throughout the trials. At SNR = -15 dB, the Moore-Spiegel system

had an entropy level of around 0.05, while the other systems had entropy levels closer to 0.08.

At SNR = -20 dB, the Moore-Spiegel system had an entropy level of around 0.1, while the other

systems had entropy levels around 0.15. When the SNR was further decreased, all of the systems

had entropy levels approaching 0.3.

10 Discussion, Conclusion, and Recommendations

Four chaotic systems, the Moore-Spiegel system, the Lorenz system, the ACT system, and the

Rossler system were introduced in a monostatic radar setting. Various tests were used to deter-

mine the ECCM capabilities and the high-resolution imaging capabilities of each system when

implemented in a monostatic radar.

The power spectrums and autocorrelations were computed for each FM waveform to analyze

the high-resolution capabilities of each chaos-based waveform. Then, a smart jammer was imple-

mented to extract the instantaneous frequency of the transmitted waveforms. It was found that by

increasing the bandwidth to 1.5 GHz and higher, the instantaneous frequency of the transmitted

signal may not be accurately recovered, and all of the chaotic systems were able to counteract the

jammer. The ambiguity function was computed to assess the high-resolution imaging capability

of a single target, and signature analysis was considered to observe the high-resolution imaging

capability for a complex airplane target. It was found that each of the chaotic systems were able to

produce high-resolution images of the target, and the range resolution was found to be 0.1m. By

adding higher levels of noise to the image, the quality of the signature analysis decreased. When

the SNR approached -15 dB and beyond, the hotspots of the targets were indistinguishable from

the noise. After conducting entropy analysis for each of the systems at SNR levels of 0 to -40 dB,

the Moore-Spiegel system displayed the least amount of entropy in the -15 dB to -20 dB range.
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I would recommend for future research to run more Monte-Carlo simulations to get a better

understanding of the performance of each chaotic system in a radar. As it was unexpected for the

Moore-Spiegel system to have the least amount of entropy in signature analysis, it could potentially

be due to the lack of large-scale data acquired for each system. If not, it would be of importance

to identify the cause of Moore-Spiegel having the best performance.

10.1 Lessons Learned

Many lessons were learned throughout this process. The first lesson was to understand the full

context of the project and any previous work done. Many problems that arise could have already

been encountered and solved in previous research. Additionally, it is not as straightforward to con-

vert a theoretical concept to a computer program. There may be much more work involved when

translating something to code than it first seems. Also, it is essential to refer to old notes. Newer

concepts may seem unfamiliar at first, but the context for the new concept may have been devel-

oped in previous notes. Lastly, it is essential to keep code organized, commented, and reusable.

When working on a program, it is important that the code still makes sense when editing it a few

days later.
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