Capstone Design – Electrical Engineering – 2020

Coffee Can Radar System

Dale Coker & Kyle Meza Advisor – Prof. Pappu & Dr. Silva

Background:

- Radio Detection and Ranging uses electromagnetic waves to detect and extract target information
- Delay and Doppler can be extracted from received signal
- Delay = time for signal to reach target and return = τ
- Doppler = frequency shift of received signal vs. transmitted signal = F_D

Key Equations

Transmit Monotone: $s(t) = A\cos(2\pi F_c t + \theta)$ $F_C = 2.45 GHz$ Mixer Output $m(t) = A'\cos(2\pi F_D t + \theta')$ $F_{D}: 245 \, Hz$

 $Velocity = \frac{\lambda F_D}{2} = 33.5 MPH$

Transmit Linear FM = $A\cos(2\pi F_c + \pi Kt^2 + \theta)$; K = 5 GHz / sec

Mixer Output $m(t) = A'\cos(2\pi K\tau t + \theta')$

Freq. shift = 3kHz: $\tau = 0.6 \mu sec$

 $Range = \frac{c\tau}{2} = 90 \text{ meters}$

Introduction:

Radar Target

Overview of Process

Cars on Nott Stree

Design Goal: Determine the range and velocity of target

Design Goals:

Key Characteristics:

- 2.4 GHz ISM Band
- Bandwidth 100 MHz.
- Transmit Power < 20 mW
- Monopole Antennas
- AA Battery Power Supply
- Cost Under \$500

Block Diagram of System

Modulator Sync pulse V-Tune 40 ms

Key Components

Spectrum

2.50 GHz

Video Amplifier

Testing and Results:

- RF power meter verified transmit power was under 20 mW
- BW was measured to be approx. 100 MHz
- .wav files were collected in Audacity® for Range and Doppler
- .wav files provided Range and Doppler information in MATLAB

2.36 GHz

- Doppler live streaming produced results within expected values
- Detected targets with a dynamic range of over 200 meters.

Future Work:

- Implement Synthetic Aperture Radar (SAR)
- Incorporate chaotic oscillator in place of V-tune
- Conduct shakedown testing of Range streaming
- Replace Proto Board with Printed Circuit Board
- Test radar system when system is in motion and target is stationary

Conclusions:

- System demonstrates key radar principles. (LFM, CW, RF Electronics...etc.)
- Signal processing (MATLAB) of raw waveforms yields Range and Doppler information from .wav files and in real time.
- The radar system was built under budget approximate \$300.

Acknowledgements:

- Professor Pappu & Dr. Silva
- Professor Hedrick
- Enrique Haro, Queensborough CC

