Abstract
Silica aerogels were prepared using the precursor tetraethylorthosilicate (TEOS) via a rapid supercritical extraction (RSCE) method. Multiple consistent batches of monolithic TEOS-based aerogels were fabricated via an 8-h RSCE process. Fabricating TEOS-based aerogels with an RSCE method offers some distinct advantages. One advantage is the relative simplicity of the RSCE approach: liquid precursors are mixed and poured into a metal mold in a hydraulic hot-press, where gelation, aging and extraction of liquid from the pores occur. The precursor recipe employs TEOS, ethanol, water, oxalic acid to catalyze hydrolysis, and ammonia to catalyze the subsequent polycondensation reactions. Another advantage is that reaction of TEOS to form sol gels yields ethanol as a byproduct. A process that releases ethanol, rather than methanol (as in tetramethylorthosilicate (TMOS)-based aerogels) may be more appealing for commercial applications, involving scale-up of the process. The significantly lower cost of TEOS, compared to TMOS, is a considerable advantage. The TEOS-based RSCE aerogels are mesoporous and optically translucent, have bulk densities of 0.099(±0.003) g/cm3 and surface areas of 460(±10) m2/g. Signals observed in infrared and Raman spectra of the aerogels are consistent with Si–O framework bonds. Using scanning electron microscopy imaging, the surface morphology of the aerogel samples was imaged at magnifications up to 150 kX.