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Abstract

We study how allowing agents to use debt as collateral affects asset prices, leverage,

and interest rates in a general equilibrium, heterogeneous-agent model with collateralized

financial contracts and multiple states of uncertainty. In the absence of debt collateral-

ization, multiple contracts are traded in equilibrium, with some agents borrowing

using risky debt and others borrowing with risk-free debt. When agents can use debt

contracts as collateral to borrow from other agents, margin requirements decrease,

asset prices increase, and the interest rate on risky debt decreases. We characterize

equilibrium for N states and L levels of debt collateralization and prove that enough

levels of debt collateralization creates an equilibrium featuring maximal leverage on all

debt contracts. In the dynamic model, debt collateralization creates larger asset price

volatility.
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1 Introduction

Prior to the 2007-2008 financial crisis, asset-backed securities (ABS) and collateralized debt

obligations (CDOs) significantly contributed to the growth of the market for subprime

mortgages. Most prominently, mortgage-backed securities dominated the market and

accounted for over half the collateral in CDOs. Although ABS and CDOs played an

important role in the housing boom and the financial crisis, we still do not fully understand

how these securitized debt markets affect the equilibrium prices of underlying mortgages and

leverage on these loans. One of the key features of securitized mortgage markets was the

ability to use debt contracts as collateral. This paper asks how debt collateralization, the

process by which debt contracts can be used as collateral for new financial contracts, affects

equilibrium leverage and asset prices.2

To study this issue, we use a general equilibrium model featuring heterogeneous agents

and collateralized borrowing following Geanakoplos (1997, 2003). We consider a model with

multiple states of uncertainty so that in a leverage economy agents trade multiple contracts in

equilibrium. With a few important exceptions, the literature on collateral in equilibrium has

focused on binomial models, implying that in equilibrium a single debt contract is traded,

which is risk-free.3 We then allow agents to use debt contracts as collateral to back new

financial contracts (i.e., to make new promises) and characterize the equilibrium.

We show that in equilibrium debt collateralization increases the total amount of leverage

in the economy, increases asset prices, and decreases interest rates on risky debt. The key

insight of our result is that the ability to collateralize debt contracts increases debt prices due

to a rise in the “collateral value” of debt. Owing to higher debt prices, leveraged investors

2Securitization has many other important features that we abstract away from in our analysis in order to
isolate the effect of debt collateralization. Securitization pools loans with similar characteristics to diversify
away idiosyncratic risks. Diversification removes less easily quantifiable risks, resulting in securities that are
relatively more standardized and thus more liquid. Tranching pools into bonds with different characteristic
creates securities with different state-contingencies, improving investors’ abilities to hedge and share risks.

3Much of the recent financial theory literature has used binomial models to study the effects of
fundamentals, tranching, and credit default swaps (“CDS”) on prices and volatility. A shortcoming of this
approach is that in equilibrium all debt in the economy is risk-free; in other words, binomial models allow
only one form of leverage, using risk-free promises. Studying debt collateralization in general equilibrium
requires the consideration of a model with risky debt. Multi-state models are richer in the sense that they
also allow the study of interactions between different financial innovations such as debt collateralization,
tranching and CDS. In current work, Gong and Phelan (2015) study the equilibrium consequences of CDS,
and the use of different assets as collateral, in a multi-state model.
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are more willing to make large promises to buy risky assets, which in turn increases the price

of the risky assets. In fact, every level of debt collateralization further increases collateral

values of debt, increasing leverage and the price of the risky asset ultimately backing all debt.

With full collateralization, in which all existing debt contracts can be used as collateral, in

equilibrium agents use the maximum amount of leverage for the investment they choose. In

a dynamic model, debt collateralization also increases volatility in asset prices since leverage

and defaults endogenously increase after bad news.

Our modeling environment is a natural way to capture the complexities and innovations

in securitized mortgage markets. First, the collateral underlying ABS, whether mortgages

or other loans, are themselves debt backed by assets (houses in the case of mortgages).4

Second, the ABS senior-subordinated tranche structure implicitly creates securities in which

debt contracts serve as collateral for further debt, and CDOs explicitly use debt (ABS

tranches) as collateral to support another level of senior-subordinated tranches. To see this,

consider a typical ABS deal, which consists of a pool of mortgages (collateral) supporting

senior, mezzanine, and equity/residual tranches. The equity tranche behaves like a leveraged

position in the collateral, with the payoff declining “linearly” with the value of the collateral

and paying zero when the collateral falls below a certain level. The senior tranche behaves

like debt, making a predetermined payoff unless the collateral value falls below a certain

threshold, at which point the payoff declines linearly to zero only when the collateral is worth

zero. The mezzanine tranches, however, behave like leveraged debt positions. For sufficient

values of collateral the tranches get the predetermined payoff (there is not additional upside

as with a leveraged position in the collateral), but the subordinated tranches get nothing if

the value of the collateral is low (like a leveraged position). In fact, the subordinated tranches

are leveraged positions in the debt implicitly “issued” by the subordinated tranches.5

Consider a simple, stylized version of an ABS deal with senior, mezzanine, and equity/

residual tranches all with face-values of 1, and suppose the value of the collateral could take

values of 1, 2, or 3. The senior bonds would get paid 1 for sure; the mezzanine bond would

4Nonetheless, there may be good reasons to consider these loans directly as “assets” rather than as loans
backed by another asset. This is typically the way mortgage assets are treated in related papers.

5In practice the payoffs are complicated by timing of prepayments and how principal payments are
allocated to the different tranches.
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get paid 1 in only when the collateral is worth 2 or 3, and zero otherwise; and the equity

would get paid 1 only in the best state, and zero otherwise. This ABS structure can be

equivalently implemented with leveraged investments in the collateral, in the debt backed

by the collateral, and in debt backed by the debt backed by collateral. The equity investor

is effectively buying the collateral with leverage, promising to repay 2 units and defaulting

whenever the collateral is worth 2 or less. The mezzanine investor is effectively buying the

promise from the equity investor and using this promise as collateral to borrow 1 from the

senior investor. The senior investor buys this promise from the mezzanine investor. This

investment scheme exactly replicates the payoffs to the ABS tranches, giving (the mezzanine)

investors the ability to use debt as collateral to make new promises.

Wall Street made the concept of using debt as collateral explicit in the creation of

CDOs. Because a pool of mortgages can actually take many more values than the number of

tranches created in an ABS, the ABS structure does not exactly correspond to the stylized

description above: the underlying promises backed by the collateral can be used to make

more promises, which is precisely the role of the CDO structure. A CDO did not create

pass-through securities backed by mezzanine ABS tranches (in which case the only value of

a CDO would have been diversification of idiosyncratic mortgage risk), but rather created

leveraged investments in the ABS tranches. Thus, the equity tranche of a CDO created

a leveraged investment in ABS tranches, and the senior tranches of a CDO would create

investments in debt “issued” by the leveraged (equity) investors. Hence, CDOs (and then

CDO-squareds) increased the degree to which debt contracts could be used as collateral to

make new promises.6

The remainder of this section discusses our relationship to the existing literature. Section

2 introduces a static general equilibrium model with collateral and three states. Section

3 considers the model with leverage, introduces debt collateralization, and characterizes

equilibrium. Additionally, Section 3 generalizes to a model with N possible states of the

world and with L levels of debt collateralization. Section 4 considers a dynamic model with

three time periods to illustrate the increase in volatility due to debt collateralization. Section

5 concludes.

6In this process, the supply of safe assets (i.e., perceived to be close to risk-free) increases.
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Related Literature

Our paper follows the model of collateral equilibrium developed in Geanakoplos (1997,

2003) and Geanakoplos and Zame (2014), which pioneered the general equilibrium analysis

of collateralized lending. Our paper is closely related to the literature on collateral and

financial innovation developed in Fostel and Geanakoplos (2008, 2012a,b, 2015a,b) and Fostel

et al. (2015). This literature, which uses dynamic, binomial general equilibrium models to

explain a variety of economic phenomena, defines financial innovation as the use of new

assets as collateral or as the ability to make new promises using existing collateral. Debt

collateralization, which expands the set of assets that can be used as collateral, fits directly

into this definition of financial innovation.

Several papers study collateral equilibrium with multiple states. Simsek (2013) uses

a model with a continuum of states to show how belief disagreements about the future

state endogenously create constraints on the amount of leverage that can be used to buy

the risky asset. Araujo et al. (2012) examine the effects of default and collateral on risk

sharing and prove that with N states, N − 1 contracts are traded in a collateral equilibrium.

Phelan (2015a) studies how changing asset risk and endowment covariances affects asset

prices and leverage in equilibrium. Geerolf (2015) studies an economy with a continuum

of states and a continuum of agents with differing point-beliefs about the asset payoff.

A continuum of contracts are traded in equilibrium, and Geerolf (2015) characterizes the

asymptotic distribution of leverage levels in the economy and also shows that interest rates

are disconnected from default probabilities, thus explaining the credit-spread puzzle.

Geerolf (2015) uses this setup to study debt collateralization (“pyramiding” in his

model), and shows that (1) the asset price increases with each layer of pyramiding, (2) the

measure of contracts traded decreases, and (3) the distribution of leverage changes. These

results are closely related to ours, however, his approach differs from our model because

agents’ disagreements are of the form of point-expectations about the asset’s value. Thus,

all debt contracts in the economy are perceived to be safe by the agents holding them, which

has fundamentally different implications for equilibrium. In our model, agents trade different

contracts precisely because of perceived risk, and the way that the set of contracts traded in
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equilibrium decreases is linked intuitively to the debt capacity of each contract.

Our work is related to the literature on securitization. Toda (2014) presents a model

in which securitized ABS markets are a way of sharing idiosyncratic risk, and entrepreneurs

endogenously borrow from loans with the lowest collateral requirement. ABS reallocate

capital to high-risk, high-return technologies, and enhance welfare through improved risk

sharing. Others have shown that the additional leverage from securitization is not without

risk. Gorton and Metrick (2012) argue that a combination of securitization and repo

finance was at the heart of the 2007-2008 financial crisis. Krishnamurthy (2009) discusses

how feedback effects in risk capital and risk aversion, repo financing, and counterparty

risk decrease liquidity and increase financing cost, causing debt markets to break down as

fundamental and market values diverge. Longstaff (2010) shows that malfunctions in debt

markets likely occurs through liquidity and risk premium channels, creating contagion for

other markets. Geanakoplos and Zame (2011) study how “security pools” affect efficiency of

equilibrium.

Our results relate to the literature on how securitized markets create safe and liquid

assets. It is well-understood that one of the motivations for the structure of ABS and CDOs

was the creation of “safe” (close to risk-free) assets (see for example Gorton and Metrick

(2009)). However, in order to create safe tranches, the risky tranches become more risky,

which Farhi and Tirole (2014) show can decrease overall liquidity. We provide a possible

resolution to the liquidity issue by motivating the demand for contingent assets so that the

risky tranches are not subject to illiquidity problems. Instead, investors demand contingent

promises as a way of increasing leverage, and the creation of risk-free assets naturally follows.

Dang et al. (2011) study how debt collateralization can alleviate asymmetric information

problems by creating information-insensitive securities, and they show that the optimal

financial instrument is debt backed by debt. Other papers have studied the problems of

valuing or rating CDOs (e.g. Bolton et al. (2012), Benmelech and Dlugosz (2010)) or the

information problems that arise (e.g. DeMarzo and Duffie (1999), DeMarzo (2005)). In our

model there are no informational problems and agents rationally value collateralized debt

contracts. Shen et al. (2014) propose a collateral view of financial innovation driven by the

cross-netting friction. In our model, debt collateralization is a way of stretching collateral,
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which is similar to their insight that financial innovation is a response to scarce collateral.

Our work is also related to the corporate finance approach of Bernanke and Gertler

(1989), Kiyotaki and Moore (1997), Holmström and Tirole (1997), Acharya and Viswanathan

(2011), and Adrian and Shin (2010), in which the endogeneity of leverage relies on asymmetric

information and moral hazard problems between lenders and borrowers. These issues are

important in loan markets for which the borrower is also a manager who exercises control

over the value of the collateral. We consider markets in which the buyer generally has no

control or specialized knowledge over the cash flows of the collateral. Our paper also relates

to the literature on the effects of credit constraints in Adrian and Boyarchenko (2012),

Brunnermeier and Pedersen (2009), Brunnermeier and Sannikov (2014, 2015) and Phelan

(2015b).

2 General Equilibrium Model with Collateral

Our analysis focuses on a special class of models with collateral which are the multi-state

extension of “C-models,” introduced by Geanakoplos (2003). These economies are complex

enough to allow for the possibility that financial innovation can have a big effect on prices

and equilibrium leverage. But they are simple enough to be tractable and to generate

unambiguous (as well as intuitive) results.

2.1 Time and Assets

We begin by considering a two-period, three-state general equilibrium model with time t =

0,1. Uncertainty in the economy is represented by a tree S = {0, U,M,D} with a root s = 0

at time t = 0 and three states of nature s = U,M,D at time 1.

There are two assets in the economy which produce dividends of the consumption good

at time 1. As a normalization, the risk-free asset X produces dXU = dXM = dXD = 1 unit of the

consumption good in every state of the world. The risky asset Y produces dYU = 1 unit in

state U , dYM < 1 units in state M , and dYD < dYM units of the consumption good. To simplify

notation, we let dYM =M and dYD =D, denoting the state and the payoff by the same variable.

Asset payoffs are shown in Figure 2.1.
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t = 0

0

t=1
U

M

D

γU(h)

γM(h)

γD(h)

dYs
1

M < 1

D <M

dXs
1

1

1

Figure 2.1: Payoff tree of assets X and Y in three-state world

We suppose that agents are uniformly distributed in (0,1), that is they are described

by Lebesgue measure.7 Investors are risk neutral and have linear utility for the consumption

good c at time 1. Each agent h assigns probability γU(h) to the state U , γM(h) to the state

M , and γD(h) = 1 − γU(h) − γD(h) to the state D. The probabilities γU(h) and γM(h) are

continuous in h. We further specify that γU(h) and the ratio γM(h)/(γM(h) + γD(h)) are

monotonically increasing in h. The second condition implies that the subjective conditional

probably of state M , given that U does not occur, is increasing in h. Hence, both conditions

imply that a higher h indicates more optimism.

The expected utility of each agent is

Uh(cU , cM , cD) = γU(h)cU + γM(h)cM + γD(h)cD,

where cs is consumption in state s. At time 0, each investor is endowed with one unit of

each asset.8

7We will use the terms “agents” and “investors” interchangeably.
8None of the results of our analysis depend on risk-neutrality or heterogeneous priors. We could reproduce

the distribution of marginal utilities we get from differences in prior probabilities by instead assuming
common probabilities, strictly concave utilities, and by allocating endowments of consumption goods so
that agents with high h have endowments that are decreasing with the states, and agents with low h have
endowments that are increasing with the states. We have chosen to replace the usual marginal analysis of
consumers who have interior consumption with a continuum of agents and a marginal buyer. Our view is
that the slightly unconventional modeling is a small price to pay for the simple tractability of the analysis.
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2.2 Financial Contracts and Collateral

We take all financial innovations exogenously and also suppose that collateral acts as the only

enforcement mechanism. At time 0, agents trade financial contracts. A financial contract

j = (Aj,Cj), consists of a promise Aj = (AjU ,A
j
M ,A

j
D) of payment in terms of the consumption

good, and collateral backing it Cj = {X,Y }. The lender has the right to seize as much of the

collateral as was promised, but no more. Therefore, upon maturity, the financial contract

yields min{AjU , d
Cj

U },min{AjM , d
Cj

M },min{AjD, d
Cj

D } in states U , M , and D respectively. Note

that agents must own collateral before making promises.

To begin our analysis, we suppose that every contract is collateralized by either one unit

of X or one unit of Y . When we later allow for debt collateralization, agents are also allowed

to borrow against the debt contracts they hold (i.e., the amount owed to them by other

agents). Note that even in this scenario, all financial contracts are ultimately collateralized

by the assets. We let JY and JX be the set of promises j backed by one unit of Y and X

respectively. The set J = JX ∪ JY is the set of all possible financial contracts.

We denote the sale of a promise j by ϕj > 0 and the purchase of the contract by ϕj < 0.

The sale of a contract corresponds to borrowing the sale price and the purchase of a promise

is equivalent to lending the price in return for the promise. The sale of ϕj > 0 units of a

contract requires ownership of ϕj units of that asset, whereas the purchase of such contracts

does not require ownership.

2.3 Budget Set

Each contract j ∈ J trades for a price πj. An investor can borrow πj by selling contract j in

exchange for a promise to pay Aj tomorrow, provided that he owns Cj. We normalize by the

price of asset X, taking it to be 1 in all states of the world. Thus, holding X is analogous to

holding cash without inflation. We let p denote the price of the risky asset Y . Given asset

and contract prices at time 0, each agent decides how much X and Y he holds and trades

contracts ϕj to maximize utility, subject to the budget set
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Bh(p, π) ={(x, y,ϕ, xU , xM , xD) ∈ R+ ×R+ ×RJX

×RJY

×R+ ×R+ ×R+ ∶

(x − 1) + p(y − 1) ≤ ∑
j∈J
ϕjπ

j (1)

∑
j∈JX

max(0, ϕj) ≤ x, ∑
j∈JY

max(0, ϕj) ≤ y (2)

cs = x + yd
Y
s − ∑

j∈JX

ϕj min(Ajs, d
X
s ) − ∑

j∈JY

ϕj min(Ajs, d
Y
s )}. (3)

Equations (1) and (2) state that expenditures on assets (purchased or sold) cannot be

greater than the money borrowed by selling contracts using assets as collateral. Equation

(3) states that in the final states, consumption must equal dividends of the assets held minus

debt repayment. Recall that a positive ϕj denotes that the agent is selling a contract or

borrowing πj, while a negative ϕj denotes that the agent is buying the contract or lending

πj. Thus there is no sign constraint on ϕj. Additionally, we assume that short selling of

assets is not possible.

2.4 Collateral Equilibrium

A collateral equilibrium in this economy is a price of asset Y , contract prices, asset purchases,

contract trade and consumption decisions all by agents

((p, π), (xh, yh, ϕh, chU , c
h
M , c

h
D)h∈(0,1)) ∈ (R+×RJ+)×(R+×R+×RJX

×RJY
×R+×R+×R+)H

such that

1. ∫
1

0 x
hdh = 1

2. ∫
1

0 y
hdh = 1

3. ∫
1

0 ϕ
h
j dh = 0 ∀j ∈ J

4. (xh, yh, ϕh, chU , c
h
M , c

h
D) ∈ Bh(p, π),∀h

5. (x, y,ϕ, cU , cM , cD) ∈ Bh(p, π) ⇒ Uh(c) ≤ Uh(ch),∀h
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Markets for consumption good in all states clear, assets and promises clear in equilibrium

at time 0 and agents optimize their utility in their budget sets. Geanakoplos and Zame (2014)

show that equilibrium in this model always exists under the assumptions made thus far.

3 Static Model

In this section we introduce the effect of debt collateralization by considering two different

versions of the collateral economy, each defined by a different set of feasible contracts J .

We describe each variation and the system of equations that characterizes equilibrium. We

begin with the 3-state model and then generalize to N states.

3.1 Leverage Economy

We first consider the simplest scenario where agents are allowed to use the risky asset Y as

collateral to issue debt contracts. We let them issue non-contingent promises using the asset

as collateral. In this case J = JY , and each Aj = (j, j, j) for all j ∈ J = JY .

As shown by Fostel and Geanakoplos (2012b), in equilibrium two contracts are traded:

jD = D and jM = M , with prices πD and πM . The interest rate on jD is zero because it is

a safe promise, and thus πD =D. However, the delivery of jM depends on the realization of

the state at time 1 and is therefore risky (jM pays (M,M,D)). This means that any agent

making the promise jM can only borrow πM <M . Thus, the interest rate for jM is strictly

positive, defined by iM = M
πM − 1, and is endogenously determined in equilibrium.

In equilibrium there are three marginal investors hM , hD, hπ. Agents h > hM will sell

their endowment of X, buy the asset Y , and promise M (issue jM) for every unit of the

asset bought.9 Agents hM > h > hD will sell their endowment of X and buy the risky asset,

promising D against every asset bought. Agents hD > h > hπ will sell their endowment of

X and Y and buy jM (effectively lending to agents h > hM). Notice that these agents hold

only promises. Agents h < hπ will sell their endowment of Y and buy risk-free assets X and

contracts jD backed by the asset. Figure 3.1 illustrates the equilibrium regime.

9To simplify notation we will use strict inequalities when referencing the marginal agent, leaving the
marginal agent’s decision ambiguous. This is without loss of generality since the marginal agent has measure-
zero.
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h = 1

h = 0

hM

Optimistic buyers of asset leveraged promising M

Moderate buyers of asset leveraged promising D

Moderate agents holding risky debt jM

Pessimists holding risk-free assets
(X and debt jD)

hD

hπ

Figure 3.1: Equilibrium regime with leverage in static model.

Marginal investors are indifferent between two different options. Thus, they can be

defined by equalizing the expected returns (defined as the expected marginal utility divided

by price) on the different investments.

• hM : indifferent between buying asset with leverage promising M and buying asset with

leverage promising D

γU(hM)(1 −M)

p − πM
=
γU(hM)(1 −D) + γM(hM)(M −D)

p −D
(4)

• hD: indifferent between buying asset promising D and holding risky debt jM

γU(hD)(1 −D) + γM(hD)(M −D)

p −D
=

(1 − γD(hD))m + γD(hD)d

πM
(5)

• hπ: indifferent between holding risky debt jM and holding safe assets.

(1 − γD(hπ))M + γD(hπ)D

πM
= 1 (6)

In equilibrium, markets must clear. We equate supply and demand for all assets in the

economy and obtain the following:
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• Supply and demand for risky asset Y :

(1 − hM)
1 + p

p − πM
+ (hM − hD)

1 + p

p −D
= 1 (7)

• Supply and demand of risky debt jM :

(1 − hM)
1 + p

p − πM
= (hD − hπ)

1 + p

πM
(8)

Equation (9) states that the agents buying the risky asset, h ∈ (hD,1), will spend all

of their endowment, (1 + p), to purchase the risky asset which costs price p and that the

demand is equal to the supply of the risky asset, 1. Equation (10) states that the amount

of risky debt demanded by agents h ∈ (hM ,1) is equal to the amount of risky debt supplied

by agents h ∈ (hπ, hD).

For the beliefs γU(h) = 1 − (1 − h)2, γM(h) = h(1 − h)2, and γD(h) = (1 − h)3, and for

payoffs dYM = .3 and dYD = .1, the equilibrium is:

hM = 0.739, hD = 0.6636, hπ = 0.541, πM = 0.2807, p = 0.8807, iM = 6.88%

We say that all agents h > hM are “maximally leveraged” in the sense that making a

larger promise would simply result in a transfer of resources to borrowers in the state(s) in

which the asset pays its maximum payoff. Agents can choose to promise more to attain more

leverage—they can make any promise j—but any promise j > M is in a sense redundant.

Notice that any contract j > M has the same deliver as jM in states M and D (because

of default against the asset’s payoff) and delivers more only in state U . However, this is

exactly the state that investors h > hM think is comparatively the most likely; thus, agreeing

to make a larger promise in U , priced according to more pessimistic agents, would result in

raising less than the value of the promise. Agents h ∈ (hD, hM), promising D against each

unit of the asset, are not maximally leveraged because promising M changes the delivery to

borrowers in both states U and M .
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3.2 Economy with Debt Collateralization

We now allow agents to use debt as collateral to make other promises. In the previous

economy, agents could use the risky asset Y as collateral; in principal, payments from the

risky debt are no different from payments from the risky asset. We now suppose that agents

can use the payments from risky debt to back further promises. We will refer to the ability

to use debt as collateral as “debt collateralization.” This follows the definition of financial

innovation as the ability to use new assets (financial contracts in this case) as collateral to

issue promises.

Specifically, we introduce contracts of the form j`(jM) = (`, jM). This contract specifies

a non-contingent promise (`, `, `) backed by the risky debt jM acting as collateral. In other

words, we allow contracts with Cj = jM and denote the collateral in the name of the contract.

The payoff to j`(jM) in each state is the minimum of the promise ` and the payoff of

the debt contract jM (i.e., min{`, djMs }). Note that the act of holding jM and selling the

contract jD(jM) is equivalent to buying jM with leverage promising D, yielding a payoff of

(M −D,M −D,0).

We denote equilibrium variables with debt collateralization by a ‘hat’ (ˆ) to distinguish

them from their counterparts with leverage. This additional financial innovation leads to

the following results.

Lemma 1. Suppose that in equilibrium agents are able to securitize debt. Then every agent

holding risky debt will maximally leverage their purchases of risky debt. That is, all agents

holding jM will sell the promise jD(jM) = (D, jM).

The full proof is in the appendix, but the intuition is straightforward. Agents holding

risky debt are essentially betting on the realization of state U or M at time t = 1, as they

would lose money if state D is realized. Since these agents are relatively optimistic (compared

to agents who choose to hold jD), they would be willing to sacrifice consumption in state D

for the chance to have even more consumption in state U or M . Since jM pays (M,M,D),

promising D maximally leverages the investment in jM . Put differently, the marginal agent

ĥπ thinks jM is priced to exactly compensate for the risk, but every agent h > ĥπ thinks the

risk is lower than implied by the price and thus would like to leverage their investment in
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the debt.

This result has four important implications for equilibrium. First, investors in jM use

borrowed money to invest, and second, issuing risk-free debt against jM increases the supply

of safe assets. These two forces imply ĥπ > hπ and π̂M > πM . Third, agents buying the risky

asset and promising M can thus borrow more for the same promise, making this investment

strategy more attractive. This implies that the marginal investor high-leveraged investor

need not be as optimistic, i.e., ĥM < hM . Fourth, because investing in risky debt is more

attractive (owing to the ability to leverage the investment) the marginal investor willing

to buy Y and promise D is more optimistic, ĥD > hD, because the least optimistic agents

previously holding the risky asset (in the leverage economy) will now prefer to hold the risky

debt with leverage because of its higher return. In fact, in equilibrium no agent chooses this

option, which is stated in the following lemma.

Lemma 2. Let agents be allowed to collateralize debt. Then, every agent holding the risky

asset will maximally leverage their purchases of the risky asset. In other words, every agent

holding the risky asset will promise M .

The full proof is in the appendix, but we provide intuition for the result. Any agents who

would prefer to buy the risky asset Y and promise D (yielding (1−D,M −D,0)) than to buy

the risky asset Y and promise M (yielding (1 −M,0,0)), would do so because they believe

state M is relatively more likely than state U . Given these beliefs, and given equilibrium

prices, these agents would prefer to get equal payments in M and U rather than a larger

payoff in U . Hence, buying the risky debt jM and promising D, which yields equal payments

in M and U but still no payment in D ((M −D,M −D,0)), is preferred to buying Y and

promising D, which yields a larger payoff in U than in M .

Proposition 1. In equilibrium, there exist two marginal buyers ĥM and ĥπ such that all

h ∈ (ĥM , ĥπ) will hold risky debt with maximal leverage (promise D); all h < ĥπ will hold safe

debt and X, and all h > ĥM will hold the risky asset with maximal leverage (promise M).

This result follows directly from the previous two lemmas and the fact that optimism

is strictly and monotonically increasing in h. Figure 3.2 illustrates the equilibrium regimes

with debt collateralization and with leverage.
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Equilibrium with Debt Collateralization

h = 1

h = 0

ĥM

Optimists holding asset

leveraged promising M

Moderates holding risky debt,

leveraged promising D

Pessimistic holders
of safe assets

ĥπ

Equilibrium with Leverage

h = 1

h = 0

hM

Optimistic buyers of asset
leveraged promising M

Moderate buyers of asset
leveraged promising D

Holders of risky debt

Pessimistic holders
of safe assets

hD

hπ

Figure 3.2: Equilibrium with leverage versus equilibrium with debt collateralization.

The key insight for this result is that the price of any asset is a sum of the payoff

value and the collateral value. Allowing a debt contract to be used as collateral increases its

price—it now has a collateral value—which increases the value to buying the risky asset and

issuing that debt contract. Furthermore, because only the risky asset will back risky debt

in equilibrium (the risky debt will back safe debt in equilibrium), the collateral value of the

risky debt, in effect, gets imparted to the risky asset. Using the risky asset to issue safe debt

is “inefficient”: the risky asset can be used to back both risky debt and safe debt by issuing

risky debt against the asset issuing safe debt against the risky debt. This process creates a

new security with collateral value, while using the asset to issue safe debt does not.

Thus, with collateralization we have the following equations defining the marginal

investors (again given by equalizing expected returns on two investment options):

• ĥM : indifferent between holding the risky asset with leverage and the risky debt with

leverage.
γU(ĥM)(1 −M)

p − π̂M
=
γU(ĥM)(M −D) + γM(hi)(M −D)

π̂M −D
(9)
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• ĥπ: indifferent between holding the risky debt with leverage and the safe asset

γU(ĥπ)(M −D) + γM(ĥπ)(M −D)

π̂M −D
= 1 (10)

The market clearing conditions are given as follows:

• Risky asset Y :
(1 − ĥM)(1 + p̂)

p̂ − π̂M
= 1 (11)

• Risky debt jM :
(1 − ĥM)(1 + p̂)

p̂ − π̂M
=

(ĥM − ĥπ)(1 + p̂)

π̂M −D
(12)

Table 1 presents the equilibrium with debt collateralization and compares to the equilibrium

with leverage. Compared to the economy with only leverage, the price of the asset rises and

the interest rate on the risky debt decreases because the amount of leverage in the economy

increases in equilibrium and there is more risky debt, and more safe debt, being supplied.

Table 1: Equilibrium with Debt Collateralization and with Leverage

Leverage Collateralization (ˆ)
p 0.8807 0.888 ↑
πM 0.2807 0.285 ↑
iM 6.88% 5.09% ↓

hM 0.739 0.681 ↓
hD 0.6636 –
hπ 0.541 0.583 ↑

Notice that the marginal safe-debt investor increases with debt collateralization, reflecting

a greater supply of safe debt. Collateralizing risky debt has thus served two purposes: it

isolates upside payoffs to agents buying risky debt with leverage, and it creates safe debt for

more pessimistic agents, increasing the supply of risk-free securities.10

10It is worth contrasting this result with Geerolf (2015), in which all debt is perceived to be risk-free
because agents have point-mass beliefs. As a result, collateralizing/pyramiding debt contracts does not
increase the supply of safe assets. In our model there is a non-trivial demand for safe assets given agents’
beliefs.
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3.3 Generalization to N States and L Levels of Collateralization

With three states, the economy with leverage features only one risky contract in equilibrium.

Once this contract can be used as collateral, no agent invests in risky debt and makes a risky

promise. In other words, allowing the first risky contract to be securitized was sufficient so

that no further contracts could be securitized. With more than 3 states this result is no

longer true. In a leverage economy, multiple risky contracts will be traded in equilibrium. If

agents can use these initial debt contracts as collateral, in equilibrium some agents will invest

in risky debt contracts and make risky promises. These second-level debt contracts (backed

by debt backed by the asset) could in principal be used as collateral to make further promises.

Equilibrium will thus depend on how many “levels of debt” can be used as collateral (i.e., how

many stages removed are promises from the risky asset ultimately backing those promises).

This issue is precisely what we analyze in this section. We show that every level of debt

collateralization increases the minimum promise made by agents buying the asset, and with

“complete collateralization,” so that any existing debt contract can be used as collateral,

agents make the maximum (natural) promise available for every investment, risky asset or

risky debt.

We will now generalize the above lemmas and proposition to a static model withN states

and L levels of collateralization. Considering multiple levels of collateralization requires

introducing some new notation for debt contracts issued at each level of collateralization.

Let the states be given by S = {S1, . . . SN} with the payout of the asset Y being sn in the

state Sn. For convenience, we well-order the states so that s1 < s2 < . . . < sN and normalize

so that sN = 1. Each agent h assigns probability γn(h) to the state Sn and we have that

N

∑
n=1

γn(h) = 1, γn(h) ≥ 0 ∀n,h.

We assume that for all M ∈ [2,N], we have that the ratio

γM(h)

∑
M
n=1 γn(h)

is monotonically increasing in h. This condition implies that the subjective conditional
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probability of state SM given states {S1, . . . SM} is increasing in h, denoting that optimism

increases uniformly with h.

In equilibrium with leverage, agents can buy the risky asset leveraged with any promise

s1, . . . , sN by selling the promise j0n = (sn, Y ) (i.e., we denote debt contracts backed directly

by the asset with a superscript 0). That is, the agent promises to pay sn at time 1 and

uses Y as collateral. Note that the payout of the promise can only be realized in states

Sn, . . . , SN . For all states Sl with l < n, the seller of j0n defaults and the buyer of j0n seizes

the asset as collateral, which is worth sl < sn. Thus, each j0n pays (sn, sn, . . . , s2, s1) in the

states (SN , SN−1, . . . , S2, S1). Additionally, note that j01 = (s1, Y ) is safe debt.

We write Y /j0n to denote the act of holding Y and selling the debt contract j0n, and

denote the price of the debt contract j0n by π0
n. In the absence of debt collateralization, we

have in equilibrium that agents will do one of the following:

1. hold Y /j0n, where 1 ≤ n ≤ N − 1,

2. hold risky debt j0n with 2 ≤ n ≤ N − 1,

3. hold safe debt j01 or the safe asset.

Definition 3.1. We say the first level of debt collateralization is the creation of promises

j1n using j0k as collateral. We write j1n(j
0
k) = (sn, j0k) denote the debt contract that is traded

when an agent holding j0k and sells the promise j1n. Note that sn is the amount promised

and we must have k > n. Again, an agent holding j0k and selling j1n is denoted by j0k/j
1
n.

For a contract j0k to be meaningful collateral for a promise sn it must be that sk > sn

because otherwise the payoff to j0k would always be less than the promise (and equality would

render the new promise redundant). Thus, in what follows we will only consider when agents

use meaningful collateral to make new promises, requiring that k > n for any contractj1n(j
0
k).

Given this restriction, the payoffs to j1n(j
0
k) are the same for every k > n, and so we can

denote the price of a contract j1n(j
0
k) by π1

n.

Definition 3.2. The L-th level of of debt collateralization is the creation of the promises jLn ,

where 1 ≤ i < N −L from the existing debt contracts jL−1k , where 1 < k < N −L + 1. In other

words, the buyer of the promise jL−1k is able to sell the promise jLn , using jL−1k as collateral.
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Again, we must have n < k. We denote the promise of jLn with jL−1k as collateral by writing

jLn (j
L−1
k ) = (sn, jL−1k ). We denote an agent buying jL−1k and selling jLn by jL−1k /jLn .

Thus, each additional level of collateralization involves the creation of new bonds, and

allows all previously existing, risky bonds to be purchased with leverage. So long as the

backing collateral is meaningful, given the monotonicity of payoffs for debt contracts, the

payoff of any contracts is defined by the promise. We use πln to denote the price of any debt

security jLn (j
L−1
k ) with k > n. Note that for all l, jl1(j

l−1
j ) = (s1, jl−1j ). Thus, the price of

jl1(j
l−1
j ) is s1 for all l because it is risk-free debt.

We can explicitly characterize equilibrium for any level of collateralization:

Theorem 3.1. At the L-th level of debt collateralization, the following leveraged positions

exist in the economy

• Y /j0n, where L < n < N

• jlj/j
l+1
k , where 0 ≤ l < L, L − l < j < N − l, L − l ≤ k < j

• jL` , where 1 ≤ ` < N −L.

Additionally, more optimistic investors invest in assets with larger face values, and

within each asset-class investors are ordered by the amount of leverage they use.

The proof is involved and given in Appendix A, essentially inductively applying the

methods used to prove Proposition 1. The intuition for this result is that each level of

collateralization increases the collateral value of new promises and of every debt contract

that could already be used as collateral. As collateralization increases, more debt contracts

have collateral value, which increases the price of the newly securitized debt as well as the

values of all the “upstream” debt contracts that can back those promises. As a result, when

a security can be used to back promises that serve as collateral L times, making a smaller

promise than stimulated by the theorem would not maximize the collateral value of debt

contracts. Thus, investors make the largest promise that maximizes the collateral value of

“downstream” promises.

We state a few implications of the theorem to provide more meaning. The second and

third corollaries follow immediately from Theorem 3.1.
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Corollary 3.1. In an N-state model with N ≥ 3, there can be at most N − 2 levels of debt

collateralization.

Proof. At N − 2 levels of debt collateralization, we have that only the agents holding the

risky asset Y are holding it leveraged against state SN−1. That is, they hold Y /j0N−1. Since

we must have a Lebesgue-measurable set of agents holding the asset, it must be the case

that N − 2 is the maximum level of collateralization.

Corollary 3.2. With each additional level of debt collateralization, there is one fewer marginal

buyer of the risky asset Y .

Corollary 3.3. Consider the continuum of agents in the economy. At the maximum N − 2

levels of debt collateralization, the interval (0,1) is broken up into N+1 sub-intervals, denoted

(1, â1), (â1, â2), . . . , (ân+1,0). The first interval, (1, â1) consists entirely of agents holding

Y /j0N−1. The second interval, (â1, â2) consists only of agents holding j0N−1/j
1
N−2. In general,

the kth interval, where k > 1, consists of agents holding jN+2−kN+1−k/j
N+1−k
N−k . In other words, every

level of agents in the economy is lending directly to the level above and maximally leveraging

the asset or contract in which they invest.

Debt Collateralization and Tranching

Tranching refers to the process of using collateral to back promises of different types. Using

collateral to back contingent promises can increase the collateral value of the asset when

agents differentially value state-contingent payoffs. Fostel and Geanakoplos (2012a) show

that, with sufficient heterogeneity regarding how states are valued, increasing the contingency

of available promises increases the collateral value, and thus the price, of an asset.

Debt collateralization has a similar effect. Each level of debt collateralization increases

the collateral value of a larger set of “upstream” debt contracts, which adds to the collateral

value of the asset. In the limit, agents isolate payoffs to be above a certain threshold,

receiving zero in default states. Equivalently, contracts have a higher collateral value because

buying a contract with a larger promise creates a greater degree of state-contingency in the

payoff. Debt collateralization is a way of adding a greater degree of state-contingency to

non-contingent debt contracts. In this section we formalize this equivalence.
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Consider an economy with no borrowing, but the asset Y can be split into the following

tranches by a financial intermediary: T1, . . . , TN−1 where T1 pays s1 in all states of the world,

and Tk, where k > 1, pays sk −sk−1 for all states of the world Sn where n ≥ k and 0 otherwise.

That is, one unit of the risky asset Y can be used to simultaneously back multiple promises,

creating the following tranches:

TN ∶ (sN − sN−1, 0, 0, . . . , 0),

TN−1 ∶ (sN−1 − sN−2, sN−1 − sN−2, 0, . . . , 0),

⋮ ⋮

T2 ∶ (s2 − s1, s2 − s1, . . . , s2 − s1,0)

T1 ∶ (s1, s1, . . . , s1)

Note that

T1 + T2 +⋯ + TN = Y.

We refer to the above as down-tranching to emphasize the state-contingency applies to “down

states” in which the payoff is below the face value.11

In this economy, rather than trading the risky asset Y , investors buy and sell the

tranches listed above (though they can exactly replicate Y by buying all the tranches). We

specify that each investor must hold a non-negative quantity of each tranche and refer to

equilibrium as the down-tranching equilibrium. The following result holds:

Corollary 3.4. The down-tranching equilibrium is equivalent to equilibrium with complete

debt collateralization. That is, there exists a bijective mapping of assets and prices from the

debt collateralization equilibrium to the down-tranching equilibrium such that the buyers of

assets remain the same. Specifically,

1. Any agent buying Y /j0N−1 (collateralization) will buy TN (down-tranching).

2. Any agent holding jln/j
l+1
n−1 with N > n > 1 (collateralization) will buy Tn (down-

tranching).

11In contrast, complete tranching would refer to the creation of Arrow securities for each state so that
each tranche was completely state-contingent, not just paying zero in down states.
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3. Any agent holding jL1 (collateralization) will buy T1 (down-traching).

4. Letting qN denote the price of TN , down-tranching equilibrium will have

(a) qN = p̂ − π̂0
N−1.

(b) qn = π̂N−n−1n − π̂N−nn−1

(c) q1 = π̂N−21 = s1.

where p̂ and π̂kj , are the equilibrium prices for the asset and debt securities in the

complete collateralization equilibrium, respectively.

Proof. This follows because the expected return of holding Tn in the down-tranching equilibrium

is the same as holding jln/j
l+1
n−1 in the collateralization equilibrium, when N > n > 1. Similarly,

the expected return of Y /j0N−1 is identical to that of TN ; the expected return to holding q1

is exactly the return of jN−21

Thus, tranching and debt collateralization have an essential equivalence. Additionally,

the down-tranching equilibrium does not require the existence of a separate financial intermediary.

To see this, consider an economy where anyone holding the asset can use it to back the

promises stated above. Then, every agent will keep/buy the tranche that provides the highest

expected return and sell the rest. This provides the equilibrium that we have already stated.

One natural candidate for the “intermediary” would be the most optimistic buyers who sell

off the remaining tranches to the other investors.

In reality financial innovation included forms of both tranching and debt collateralization.

Subprime mortgage pools would be used to create tranches of different seniority. Each

tranche of the asset-backed security (“ABS”) would pay different amounts depending on the

aggregate value of the mortgage pool (i.e., in different states of the world). A typical ABS

deal would tranche a pool of mortgages into 4 or 5 rated bonds and a residual, or equity,

tranche. These tranches (typically the mezzanine bonds) would then be pooled together

to serve as collateral for a CDO, which would issue another 4-5 bonds. And the process

would continue as the tranches from the CDO would be collateralized into a CDO-squared.

Each stage included both tranching and collateralization of existing debt securities. One
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can suppose that this process allowed Wall Street to progressively approach the “complete

collateralization” or “down-tranching” benchmark using fewer, less complex steps.

4 Price Volatility in a Dynamic Model

The static models illustrates that debt collateralization leads to agents making larger promises,

increasing the leverage in the economy as a larger number of agents buy the risky asset against

the maximum promise, and even agents investing in risky debt make the maximum promise.

In this section we examine how debt collateralization affects volatility and default. We

consider a dynamic model following Geanakoplos (2003, 2010). These papers demonstrate

how using an asset as collateral creates a “Leverage Cycle” in which asset prices become

more volatile because of fluctuations in the asset’s collateral value and the distribution of

investors’ wealth. The main result of this section is that in equilibrium debt collateralization

exacerbates and amplifies the leverage cycle, creating more price volatility and more defaults

than occur with leverage alone.

We consider a dynamic variation of the model in Section 3 with three periods, t = 0,1,2.

Uncertainty in the payoffs of Y is represented by a tree

S = {0, U,M,D,UU,MU,MD,DU,DD},

illustrated in Figure 4.1. The asset pays only at t = 2 with payoffs dYs . To simplify, we will

normalize the asset payoffs so that dYUU = dYMU = dYDU = 1. Thus the possible “down payoffs”

of the asset are dYMD and dYDD < dYMD. In other words, the payoff tree is binary at t = 1 with

a worse possible realization at state M than at D, and at t = 0 there is uncertainty about

what the minimum possible asset payoff will be.

The risky asset Y has price p0 at t = 0 and prices pM and pD in states M and D in

t = 1. (In state U the price is trivially 1.) Just as before, we first look at an economy where

leverage is the only financial innovation and then move on to explore the consequences of

debt collateralization.
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Figure 4.1: Payoff tree for risky asset in dynamic three-state model.

4.1 The Dynamic Economy with Leverage

With leverage, the dynamic equilibrium is essentially different from the static equilibrium

because of the dynamic interaction between prices and leverage across time. However, the

equilibrium regimes in each state resemble the equilibrium regime in the static economy of

Section 3. The dynamic equilibrium with leverage is given by the following.

In equilibrium, at time 0 there are three marginal agents, hM0, hD0, and hπ0. Agents

h > hM0 buy the risky asset and promise pM (i.e., they sell the contract jpM ), which is a risky

promise (the contract jpM delivers pD < pM in state D); agents h ∈ (hD0, hM0) buy the risky

asset and promise pD (i.e., they sell the contract jpD), which is a risk-free promise; agents

h ∈ (hπ0, hD0) buy the risky debt jpM ; and agents h < hπ0 buy risk-free asset X and risk-free

debt jpD . Unlike in a binomial economy, there is a possibility of default in the down state

D because agents h ∈ (hM0,1) cannot pay off the entirety of their debt, having promised pM

when the asset is only worth pD < pM . We denote the price of the risky debt jpM by π0,

which has interest rate i0 =
pM
π0

− 1.

At time 1, agents receive news about the economy. Margin calls occur and the remaining

agents trade assets and make promises. Because the economy is binomial at time 1, in
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equilibrium agents trade only risk-free contracts. In equilibrium there is one marginal

investor in each state, with the remaining optimistic investors buying the risky asset against

the maximal risk-free promise possible given the state. Thus, in state M there is a marginal

investor hMM . Investors h > hM0 have zero wealth after repaying their promise. Investors

h ∈ (hMM , hM) buy the risky asset and promise M , which is the minimum payoff at t = 2.

Investors h < hMM buy risk-free assets. In state D there is one marginal investor hDD.

Investors h > hD0 have zero wealth after repaying their promise. Investors h ∈ (hDD, hD0)

buy the risky asset and promise D, which is the minimum payoff at t = 2. Investors h < hDD

buy risk-free assets.12

s = 0

h = 1

h = 0

hM0

hD0

hπ0

s =M

h = 1

h = 0

hM0

hMM

s =D

h = 1

h = 0

hM0

hD0

hDD

Figure 4.2: State of agents at time 0 and 1
in economy with leverage

Table 2: Wealth of agents at time 1

State M State D
h ∈ (hM0,1) 0 0

h ∈ (hD0, hM0) (
1+p0
p−pD ) (pM − pD) 0

h ∈ (hπ0, hD0) (
1+p0
π0

)pM (
1+p0
π0

)pD
h ∈ (0, hπ0) 1 + p0 1 + p0

Red portions of the unit interval in Figure 4.2 indicate all investors who have lost their

wealth and are no longer participating in the market at time 1. Note that we do not know

the positions of hMM and hDD relative to the positions of the marginal investors at time

t = 0. Table 2 gives the wealth of agents at time 1 based on their previous investment choices.

Solving the system numerically with γU(h) = h, γM(h) = h(1−h), γD(h) = (1−h)2, and

payoffs dYMD = .3 and dYDD = .1, we have that hπ holds the safe asset in state M and the risky

12Since we do not know the positions of hMM and hDD relative to the marginal investors at time 0, there
are several possible equilibrium cases. These cases, as well as the equations defining equilibrium, are listed
in Appendix B.
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asset in state D. The marginal investors and prices in equilibrium are:

hM0 = 0.937, hD0 = 0.869, hπ0 = 0.631, p0 = 0.953, π0 = 0.754,

hMM = 0.665, hDD = 0.563, pM = 0.766, pD = 0.607, i0 = 1.6%.

The percent price drop in each state, given by 1 − pi
p , is 19.68% in state M , and 36.33% in

state D.

One reason the crash in D is so large is that investors who bought the risky debt are

receiving less than the face value, and less than they invested. This “default mechanism”

depresses pD because remaining investors have less wealth. We isolate the impact of the

default mechanism in Appendix B.3 by considering a surprise bailout in s = D to replace

the wealth lost to default. Appendix B.3 also compares the 3-state dynamic model to

corresponding binomial models and shows that in each case the price crash in the down state

of the three state world is greater than the price crash in any of the two-state models and that

the biggest price crash is obtained in the case of debt collateralization. This phenomenon

occurs precisely because the three-state model with collateralization has more bankrupt

agents at time 1 in the down state when compared to the two-state models. Appendix B.4

explores comparative statics for how prices and marginal investors change depending on the

payout in dYMD.

4.2 The Dynamic Economy with Debt Collateralization

We now suppose that agents at time 0 can use debt as collateral to make further promises.

Given our results in the previous section, we can easily characterize equilibrium in the

dynamic model.

The dynamic equilibrium with debt collateralization is given by the following. In

equilibrium there are two marginal agents at time 0, ĥM0, and ĥπ0. Agents h > ĥM0 buy

the risky asset and promise pM ; agents h ∈ (ĥπ0, ĥM0) buy the risky debt with promise pM

and use it as collateral to promise pD; and agents h < ĥπ0 buy the risk-free asset X and the

risk-free debt (with promise pD).

27



In equilibrium, at time 1 there is one marginal investor in each state as discussed

previously. Notice that if the economy is in state M at time 1, then agents h ∈ (ĥM0,1) will

be bankrupt; if the economy is in state D at time 1, agents h ∈ (ĥπ0,1) will be bankrupt,

illustrated in Figure 4.3.13

s = 0
h = 1

h = 0

ĥM0

ĥπ0

s =M
h = 1

h = 0

ĥM0

ĥMM

s =D
h = 1

h = 0

ĥM0

ĥπ0

ĥDD

Figure 4.3: State of agents at t = 0,1 in economy with debt collateralization

Table 3 gives the equilibrium with debt collateralization and compares it to the equilibrium

with leverage. The price crash is also greater in each state.

Note that the “default mechanism” is effectively much greater with debt collateralization

since all debt in the economy is fully collateralized and leveraged. Rather than being poorer

in the down state, agents holding risky debt will be completely out of the market. In this

case, debt collateralization leads to even more volatility since the agents buying the asset in

the down state will be more pessimistic.

Our result that debt collateralization increases volatility is closely related to previous

work studying collateral values and volatility. Fostel and Geanakoplos (2012a) show that

asset price volatility increases when agents can tranche assets. Tranching increases the

collateral value of the risky asset, and in a dynamic setting the “Tranching Cycle” exhibits

larger fluctuations in collateral values and in the distribution of wealth. In a two country

13Note that we do not know the position of ĥMM relative to the positions of the other marginal investors
at time 0, but we do know the relative position of ĥDD. The equations defining equilibrium are in Appendix
B.
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Table 3: Dynamic Equilibrium with Debt Collateralization and with Leverage

Leverage Collateralization (ˆ)
p0 0.953 0.970 ↑
pM 0.766 0.762 ↓
pD 0.607 0.602 ↓
π0 0.754 0.762 ↑
i0 1.6% 0.00985% ↓

hM0 0.937 0.894 ↓
hD0 0.869 –
hπ0 0.631 0.813 ↑
hMM 0.665 0.660 ↓
hDD 0.563 0.558 ↓

M crash 19.68% 21.48% ↑

D crash 36.33% 37.91% ↑

model, Fostel et al. (2015) show that this result is amplified by international financial flows,

which can further increase collateral value because of international demand for collateral-

backed financial promises. We have shown that debt collateralization increases the collateral

value of debt contracts and of the risky asset. As a result, asset price volatility increases

because debt collateralization increases fluctuations in collateral values and in the distribution

of wealth.

5 Conclusion

The securitized mortgage markets for ABS and CDOs implicitly and explicitly give investors

the ability to use debt contracts as collateral for further promises. We have shown that

the ability to collateralize debt backed by a risky asset decreases margins on the risky asset

(increases leverage) and decreases the borrowing interest rate for risky debt. When debt

serves as collateral, the price of debt increases, giving leveraged investors an incentive make

larger promises to use more leverage. As a result, in the dynamic model price crashes are

larger because the economy features more leverage, and thus more defaults.
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Appendices

A Proofs

Proof of Lemma 1. Suppose for contradiction that there exists an hi who prefers to hold the

risky debt with some amount of leverage L, 0 ≤ L <D, less than the maximum. Since L <D

it is risk-free and thus π̂L = L. The marginal utilities from investing in jM against promise

L, from investing in jM against promise D, and from holding safe assets are:

debt with leverage L:
(γU(hi) + γM(hi))(M −L) + γD(hi)(D −L)

π̂M −L
(13)

debt with leverage D:
γU(hi)(M −D) + γM(hi)(M −D)

π̂M −D
(14)

safe asset: 1. (15)

Since by assumption hi strictly prefers the first option, it must be the case that (13) >

(14) and (13) > (15). That is, the investor is optimistic enough to prefer the risky debt to

safe debt but not so optimistic as to want zero payoff in D. Hence,

(γU(hi) + γM(hi))(M −L) + γD(hi)(D −L)

π̂M −L
>
γU(hi)(M −D) + γM(hi)(M −D)

π̂M −D
, (16)

(γU(hi) + γM(hi))(M −L) + (1 − γU(hi) − γM(hi))(D −L)

π̂M −L
> 1 (17)

Simplifying 16, we obtain

π̂M − (γU(hi) + γM(hi))M − γD(hi)D > 0 Ô⇒ π̂M > (γU(hi) + γM(hi))M + γD(hi)D

Simplifying 17, we obtain

π̂M − γD(hi)D − (γU(hi) + γM(hi))M < 0 Ô⇒ π̂M < γD(hi)D + (γU(hi) + γM(hi))M

Note that the above gives us π̂M > π̂M . This is a contradiction. Thus, in equilibrium, all

agents holding risky debt will do so with maximal leverage.
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Proof of Lemma 2. In equilibrium, each unit of the leveraged risky asset must be backed by

one unit of debt, either safe or risky and leveraged. By previous lemma, we have shown

that all agents holding risky debt will be maximally leveraged. We therefore know that

agents holding the risky asset must either be leveraged against state D or state M and not

something in-between.

Suppose for contradiction that there is some agent hi who prefers to hold the risky asset

leveraged against state D and the price of debt is D. That is, the investor is optimistic

enough to prefer the risky asset with low leverage to the leveraged risky debt, but not so

optimistic as to want to maximally leverage the asset and get zero payoff in M . Note that

returns from investment strategies are:

Marginal utility from risky asset with debt D ∶
γU(hi)(1 −D) + γM(hi)(M −D)

p̂ −D
(18)

Marginal utility from risky asset with debt M ∶
γU(hi)(1 −M)

p̂ − π̂M
(19)

Marginal utility from risky debt ∶
(γU(hi) + γM(hi))(M −D)

π̂M −D
(20)

Since by assumption hi strictly prefers the first option, it must be the case that (18) > (19)

and (18) > (20). That is,

γU(hi)(1 −D) + γM(hi)(M −D)

p̂ −D
>
γU(hi)(1 −M)

p̂ − π̂M
(21)

γU(hi)(1 −D) + γM(hi)(M −D)

p̂ −D
>

(γU(hi) + γM(hi))(M −D)

π̂M −D
(22)

Simplifying 21, we obtain that

γM(hi)(Mp̂ +Dπ̂M −Mπ̂M −Dp̂) > γU(hi)(π̂
M +MD +Dp̂ −D −Dπ̂M −Mp̂)

Simplifying 22, we obtain

γU(hi)(π̂
M +MD +Dp̂ −D −Dπ̂M −Mp̂) + γM(hi)(Mπ̂M +Dp̂ −Dπ̂M −Mp̂) > 0
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For convenience, let

α ∶= γM(hi)(Mp̂ +Dπ̂M −Mπ̂M −Dp̂), β ∶= γU(hi)(π̂
M +MD +Dp̂ −D − dπ̂M −Mp̂)

Notice that the above two equations simplify to

α > β, β − α > 0

This is clearly a contradiction since we cannot have both α > β and β > α. Thus, all investors

holding the risky asset will be maximally leveraged against state M .

A.1 Proof of Theorem 3.1

We proceed with the proof by induction, and break the proof into the following two parts.

1. The equilibrium at the first level of collateralization.

2. Equilibrium at the Lth level of collateralization.

A.1.1 Equilibrium at the first level of collateralization

To prove the base case, we will show that agents will hold one of the following assets in

equilibrium:

• Y /j0i , where 2 ≤ i ≤ N − 1,

• j0i /j
1
j , where 2 ≤ i ≤ N − 1, 1 ≤ j < i.

• j1j , where 1 ≤ j ≤ N − 2.

That is, agents will hold the risky asset, Y , leveraged against states S2, . . . , SN−1; the

risky debt contract, j0n (backed by the risky asset), leveraged against some state Sj with

j < n; or a debt security j1k (1 ≤ k ≤ N − 2), which is backed by risky debt.

Note that the j1k contracts are just securities created in the first round of debt collateralization.

Apart from this, the only difference from equilibrium with leverage is that all risky debt
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contracts backed directly by Y are now bought with leverage, and no agent holds Y , leveraged

against S1. Thus, to prove the base case, it suffices to prove the following two lemmas:

Lemma 3. In the first level of collateralization, no agent will hold Y /j01 .

Proof of Lemma 3. The intuition for this lemma is nearly identical to the intuition for

lemmas 1 and 2. Suppose for contradiction that some agent, h prefers to hold Y /j01 . Then,

it must be the case that the expected return of holding Y /j01 is greater than holding Y /j0N−1.

This implies that we must have

N

∑
i=1
γi(h)(si − s1)

p̂ − π̂0
1

>
γN(h)(sN − sN−1)

p̂ − π̂0
N−1

(23)

Rearranging and simplifying, we obtain

N−1
∑
i=1

γi(h)(si − s1)(p̂ − π̂
0
N−1) + γN(h)[(sN − s1)(p̂ − π̂

0
N−1) − (s1 − sN−1)(p̂ − π̂0

N−1)] > 0. (24)

Furthermore, we know that the expected return of holding Y /j01 is greater than holding

j0N−1/j
1
1 , which gives

N

∑
i=1
γi(h)(si − s1)

p̂ − π̂0
1

>

N−1
∑
i=1

γi(h)(si − s1) + γN(h)(sN−1 − s1)

π̂0
N−1 − π̂

1
1

(25)

Rearranging and simplifying, we obtain

N−1
∑
i=1

γi(h)(si − s1)(π̂
0
N−1 − p̂) + γN(h)[(sN − s1)(π̂

0
N−1 − π̂

1
1) − (sN−1 − s1)(p̂ − π̂1

1)] > 0 (26)

A quick check will assure readers that equations (24) and (26) provide a contradiction because

the expressions to the left of the > sign are additive inverses and therefore cannot be both

strictly greater than 0.

Lemma 4. In the first level of collateralization, any agent buying the promise j0j with j > 1

will also sell a promise j1k with 1 ≤ k < j.
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Proof of Lemma 4. Now suppose that some agent h prefers to hold a promise j0` with j > 1,

but not sell a debt security. Then, it must be the case that the expected return of holding

j0` is greater than the expected return of holding j0` /j
1
1 . That is,

`−1
∑
i=1
γi(h)(si) +

N

∑
i=`
γi(h)(s`)

π̂0
`

>

`−1
∑
i=1
γi(h)(si − s1) +

N

∑
i=`
γi(h)(s` − s1)

π̂0
` − π̂

1
1

(27)

Note that π̂1
1 = s1, since j11 promises s1 in all states and is therefore safe debt. Thus,

rearranging and simplifying 33, we obtain

s1 (π̂
0
` −

`−1
∑
i=1
γi(h)(si) −

N

∑
i=`
γi(h)(s`)) > 0 Ô⇒ π̂0

` −
`−1
∑
i=1
γi(h)(si) −

N

∑
i=`
γi(h)(s`) > 0

We also know that the expected return of holding j0` must be greater than holding the

safe asset. Consequently,

`−1
∑
i=1
γi(h)(si) +

N

∑
i=`
γi(h)(s`)

π̂0
`

> 1 (28)

Rearranging and simplifying 34, we obtain

`−1
∑
i=1
γi(h)(si) +

N

∑
i=`
γi(h)(s`) > π̂

0
` Ô⇒

`−1
∑
i=1
γi(h)(si) +

N

∑
i=`
γi(h)(s`) − π̂

0
` > 0

The above clearly cannot happen because we have that the two equations are additive

inverses of each other and therefore cannot both be strictly greater than 0. Thus, no agent

holding a risky debt contract will prefer to hold the contract unleveraged.

A.1.2 Induction Hypothesis

We now assume that the theorem holds for all levels of collateralization T with T < L.

Specifically, this means that the theorem holds with L−1 levels of collateralization. Looking

at this level, we have that agents will hold one of the following assets in equilibrium:

• Y /j0i , with L − 1 < i ≤ N − 1.
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• jlj/j
l+1
k , with 0 ≤ l < L − 1, L − 1 − l < j < N − l, and L − 1 − l ≤ k < j.

• jL−1` , with 1 ≤ ` < N −L + 1.

A.1.3 Equilibrium at the Lth level of collateralization

At the Lth level of collateralization, we allow all agents holding jL−1` (with 1 ≤ ` < N −L+ 1)

to sell the promise jLn (j
L−1
` ) = (sn, jL−1` ) where 1 ≤ p < `.

We will prove the following:

1. No agent holds Y /j0M . This implies that the asset j0M/j1M−1 no longer exists.

2. No agent holding the debt security jL−1` with 1 < ` < N − L + 1 will do so without

leveraged.

3. No agent will hold jlj/j
l+1
L−1−l, for 0 ≤ l < L− 1 and L− 1− l < j < N − l. This implies that

all jl+1L−1−l/A
l+2
L−2−l no longer exist in equilibrium

Note that the above are the changes between the L−1 and Lth levels of collateralization

given by the theorem. We break up the proof into three lemmas, corresponding to the three

claims listed above.

Lemma 5. At the Lth level of collateralization, no agent will hold Y /j0L.

Proof of Lemma 5. Suppose for contradiction that some investor h wants to hold Y /j0L. Then

the leveraged expected return to this asset must be strictly greater than the expected return

to holding Y /j0N−1. This means that

N

∑
i=L
γi(h)(si − sL)

p̂ − π̂0
L

>
γN(h)(sN − sN−1)

p̂ − π̂0
N−1

. (29)

Rearranging and simplifying the above, we obtain

N−1
∑
i=L

γi(h)(si − sL)(p̂ − π̂
0
N−1) + γN[(h)(sN − sL)(p̂ − π̂

0
N−1) − (sN − sN−1)(p̂ − π̂0

L)] > 0 (30)

Additionally, holding Y /j0L must have a higher expected return than holding j0N−1/j
1
L.

Note that at the Lth level of collateralization, both j0L and j1L are fully securitized so they
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have the same price. That is π̂0
L = π̂

1
L.

N

∑
i=L
γi(h)(si − sL)

p̂ − π̂0
L

>

N−1
∑
i=L

γi(h)(si − sL) + γN(h)(sN−1 − sL)

π̂0
N−1 − π̂

0
L

(31)

Rearranging and simplifying, we have

N−1
∑
i=L

γi(h)(si − sL)(π̂
0
N−1 − p̂) + γN(h)[(sN − sL)(π̂

0
N−1 − π̂

0
L) − (sN−1 − sL)(p̂ − π̂0

L)] > 0 (32)

The expressions on the left side of the > sign in equations (30) and (32) are additive

inverses, and therefore cannot both be strictly greater than 0. Thus, we have a contradiction

and no agent will hold Y /j0L.

Lemma 6. At the Lth level of collateralization, every agent holding jL−1i with 1 < i < N −L+1

will sell a promise jLj , where 1 ≤ j < i.

Proof of Lemma 6. Suppose that there exists an agent, h, holding jL−1i with 1 < ` < N −L+1

and prefers not to sell any promises. Then, it must be the case that the expected return of

holding jL−1` is greater than the expected return of holding jL−1` /jL1 . That is,

`−1
∑
i=1
γi(h)(si) +

N

∑
i=`
γi(h)(s`)

π̂L−1`

>

`−1
∑
i=1
γi(h)(si − s1) +

N

∑
i=`
γi(h)(s` − s1)

π̂L−1` − π̂L1
(33)

Note that π̂L1 = s1, since jL1 promises s1 in all states and is therefore safe debt. Thus,

rearranging and simplifying 33, we obtain

s1 (π̂
L−1
` −

`−1
∑
i=1
γi(h)(si) −

N

∑
i=`
γi(h)(s`)) > 0 Ô⇒ π̂L−1` −

`−1
∑
i=1
γi(h)(si) −

N

∑
i=`
γi(h)(s`) > 0

We also know that the expected return of holding jL−1` must be greater than holding

the safe asset. Consequently,
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`−1
∑
i=1
γi(h)(si) +

N

∑
i=`
γi(h)(s`)

π̂L−1`

> 1 (34)

Rearranging and simplifying 34, we obtain

`−1
∑
i=1
γi(h)(si) +

N

∑
i=`
γi(h)(s`) > π̂

L−1
` Ô⇒

`−1
∑
i=1
γi(h)(si) +

N

∑
i=`
γi(h)(s`) − π̂

L−1
` > 0

The above clearly cannot happen because we have that the two equations are additive

inverses of each other and therefore cannot both be strictly greater than 0. Thus, no agent

holding a risky debt contract will prefer to hold the contract unleveraged at the Lth level of

collateralization.

Lemma 7. At the Lth level of collateralization, for all 0 ≤ l < L − 1, no agent will hold

jlk/j
l+1
L−1−l, where L − l ≤ k < N − l.

Proof of Lemma 7. Suppose for contradiction that there exist some agent h who prefers to

be in the position stated above. Then, it must be the case that the is greater than the

expected return of holding jlk/j
l+1
L−l. Thus,

k−1
∑
i=L−l

γi(h)(si − sL−1−l) +
N

∑
i=k
γi(h)(sk − sL−1−l)

π̂lk − π̂
l+1
L−1−l

>

k−1
∑
i=L−l

γi(h)(si − sL−l) +
N

∑
i=k
γi(h)(sk − sL−l)

π̂lk − π̂
l+1
L−l

.

(35)

We rearrange and simplify the above to obtain

k−1
∑
i=L−l

γi(h)Ω +
N

∑
i=k
γi(h)Ψ > 0 (36)

where

Ω ∶= (si − sL−1−l)(π̂lk − π̂
l+1
L−l) − (si − sL−l)(π̂lk − π̂

l+1
L−1−l) (37)
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and

Ψ ∶= (sk − sL−1−l)(π̂lk − π̂
l+1
L−l) − (sk − sL−l)(π̂lk − π̂

l+1
L−1−l) (38)

Furthermore, it must also be the case that the expected return of holding jlk/j
l+1
L−1−l is

greater than the expected return from holding jl+1L−l/j
l+2
L−1−l. It is important to note here that

the price of jl+2L−1−l is the same as the price of jl+1L−1−l because at the Lth level of collateralization,

both have been securitized to the exact same degree, so the two have the same value. Thus,

abusing notation, we can write π̂l+2L−1−l = π̂
l+1
L−1−l. This give us

k−1
∑
i=L−l

γi(h)(si − sL−1−l) +
N

∑
i=k
γi(h)(sk − sL−1−l)

π̂lk − π̂
l+1
L−1−l

>

N

∑
i=L−l

γi(h)(sL−l − sL−1−l)

π̂l+1L−l − π̂
l+1
L−1−l

(39)

Rearranging and simplifying the above inequality, we obtain

k−1
∑
L−l

γi(h)Υ +
N

∑
i=k
γi(h)Φ > 0, (40)

where

Υ ∶= (si − sL−1−l)(π̂l+1L−l − π̂
l+1
L−1−l) − (sL−l − sL−1−l)(π̂lk − π̂

l+1
L−1−l), (41)

and

Φ ∶= (sk − sL−1−l)(π̂l+1L−l − π̂
l+1
L−1−l) − (sL−l − sL−1−l)(π̂lk − π̂

l+1
L−1−l). (42)

A quick check will assure the readers that

Υ = −Ω, Φ = −Ψ.

This is a contradiction because it means that equations (36) and (40) cannot both be

true. Thus, no agent will hold jlk/j
l+1
L−1−l, where 0 ≤ l < L − 1 and L − l ≤ k < N − l.
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B Equilibrium and Default in the Dynamic Model

B.1 Equilibrium Conditions with Leverage: Section 4.1

For a few marginal investors, we have no doubt about their course of action. The equations

defining them are as follows.

Marginal Investors, known

hM0: indifferent between leveraging against pM and pD at time t = 0. If at time t = 1 we are

in state D, then hM0 is no longer in the market. If at t = 1 we are in state M , hM0 will

choose to hold the risky asset because he is the most optimistic investor in the market.

Thus, we have

γU(hM0)(1 − pM)

p0 − π0
=
γU(hM0)(1 − pD)

p0 − pD
+ (

γM(hM0)(pM − pD)

p0 − pD
)(

γU(hM0)(1 − dYMD)

pM − dYMD

) .

The above equates the marginal utility divided by payoff of holding the risky asset

leveraged against pM and the marginal utility divided by the payoff of holding the

asset leveraged against pD. Note that this differs from previous equations because we

need to multiply by the continuation value of the asset at time 2.

hMM ∶ Indifferent between risky asset and riskless asset given the realization of state M at

t = 1. Since this marginal investor only exists at time t = 1 in state M . There is no

ambiguity.
γU(hMM)(1 − dYMD)

pM − dYMD

= 1

hDD ∶ Indifferent between risky asset and riskless asset given the realization of state D at

t = 1. hDD also only exists at time t = 1 in state D.

γU(hDD)(1 − dYDD)

pD − dYDD
= 1

Marginal Investors, unknown

hD0: indifferent between leveraging against pD and holding risky debt at time t = 0. If at
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time t = 1 the world is in state D, hD0 will choose to hold the risky asset. But, at time

t = 1 in state M , hD0 can either choose to hold the risky asset or the safe asset.

Let hD0 hold the risky asset. To simplify notation, let γD0 = γU(hD0). Then, equating

payoffs (multiplied by continuation values, we have:

γD0(1 − pD)

p0 − pD
+ (

γD0(1 − γD0)(pM − pD)

p0 − pD
)(

γD0(1 − dYMD)

pM − dYMD

)

=
γD0pM
π0

+ (
γD0(1 − γD0)(pM)

π0
)(

γD0(1 − dYMD)

pM − dYMD

)

+ (
(1 − γD0)2pD

π0
)(

γD0(1 − dYDD)

pD − dYDD
)

When hD0 holds the safe asset, we have:

γD0(1 − pD) + γD0(1 − γD0)(pM − pD)

p − pD

=
(1 − (1 − γD0)2)pM

π0
+ (

(1 − γD0)2pD
π0

)(
γD0(1 − dYDD)

pD − dYDD
)

hπ0: indifferent between holding risky debt and holding riskless asset at time t = 0. There

are several possibilities for this agent. At time t = 1 in state M , the agent can either

hold the safe or risky asset. At time t = 1 in state D, the agent can either hold the safe

or risky asset. To simplify notation, let γπ0 = γU(hπ0). Thus, we have four possible

equations defining this agent:

M safe, D safe.
(1 − (1 − γπ0)2)pM + (1 − γπ0)2pD

π0
= 1

M risky, D risky.

γπ0pM
π0

+ (
γπ0(1 − γπ0)pM

π0
)(

γπ0(1 − dYMD)

pM − dYMD

) + (
(1 − γπ0)2pD

π0
)(

γπ0(1 − dYDD)

pD − dYDD
) = 1

M safe, D risky.

(1 − (1 − γπ0)2)pM
π0

+ (
(1 − γπ0)2pD

π0
)(

γπ0(1 − dYDD)

pD − dYDD
) = 1
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M risky, D safe.

γπ0pM
π0

+ (
γπ0(1 − γπ0)pM

π0
)(

γπ0(1 − dYMD)

pM − dYMD

) +
(1 − γπ0)2pD

π0
= 1

The known market clearing conditions are for the asset and debt at time 0. Equating

supply with demand, we obtain:

Time t = 0, Asset:

(1 − hM0)
(1 + p0)

(p0 − π0)
+ (hM0 − hD0)

(1 + p0)

(p0 − pD)
= 1

Time t = 0, Risky Debt:

(1 − hM0)
(1 + p0)

(p0 − π0)
= (hD0 − hπ0)

(1 + p0)

π0

Market Clearing, unknown

Time t = 1, State M Asset: We are unsure whether hMM ∈ (0, hπ0), hMM ∈ (hπ0, hD0), or

hMM ∈ (hD0, hM0). This issue can be resolved by considering all cases, solving for equilibrium,

and checking that hMM is indeed in the specified interval. hMM ∈ (0, hπ0):

(hM0 − hD0) (
1+p0
p0−pD ) (pM − pD)

pM − dYMD

+
(hD0 − hπ0) (

1+p0
π0

) (pM)

pM − dYMD

+
(hπ0 − hMM)(1 + p0)

pM − dYMD

= 1

hMM ∈ (hπ0, hD0):

(hM0 − hD0) (
1+p0
p0−pD ) (pM − pD)

pM − dYMD

+
(hD0 − hMM) (

1+p0
π0

) (pM)

pM − dYMD

= 1

hMM ∈ (hD0, hM0):

(hM0 − hMM) (
1+p0
p0−pD ) (pM − pD)

pM − dYMD

= 1

Time t = 1, State D Asset: We do not know whether hDD ∈ (0, hπ0) or hDD ∈ (hπ0, hD0). In

the first case, we have:

(hD0 − hπ0) (
1+p0
π0

)pD

pD − dYDD
+

(hπ0 − hDD)(1 + p0)

pD − dYDD
= 1.
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In the second case, we have

(hD0 − hDD) (
1+p0
π0

)pD

pD − dYDD
= 1.

Thus, we obtain the following possible cases in equilibrium:

1. hD0 holds risky asset at time 1 in state M .

(a) hπ0 holds risky asset in state M and risky asset in state D.

This implies that hMM , hDD ∈ (0, hπ0).

(b) hπ0 holds safe asset in state M and safe asset in state D.

This implies that hMM , hDD ∈ (hπ0, hD0).

(c) hπ0 holds risky asset in state M and safe asset in state D.

This implies that hMM ∈ (0, hπ0) and hDD ∈ (hπ0, hD0).

(d) hπ0 holds safe asset in state M and risky asset in state D.

This implies that hMM ∈ (hπ0, hD0) and hDD ∈ (0, hπ0).

2. hD0 holds safe asset at time 1 in state M .

This implies that hMM ∈ (hD0, hM0) and hπ0 holds safe asset in state M .

(a) hπ0 holds safe asset in state D.

This implies that hDD ∈ (hπ0, hD0).

(b) hπ0 holds risky asset in state D.

This implies that hDD ∈ (0, hπ0).

B.2 Equilibrium Conditions with Collateralization: Section 4.2

The equations defining equilibrium are as follows

Marginal Investors, known

ĥM0: indifferent between holding risky asset, leveraged against state M and risky debt

leveraged against state D at time 0

γU(ĥM0)(1 − p̂M)

p̂0 − π̂0
=
γU(ĥM0)(p̂M − p̂D)

π̂0 − p̂D
+
γM(ĥi)(p̂M − p̂D)

π̂0 − p̂D
(
γU(1 − dYMD)

p̂M − dYMD

)
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ĥMM ∶ Indifferent between holding risky asset and safe asset at time 1, state M .

γU(ĥMM)(1 − dYMD)

p̂M − dYMD

= 1

ĥDD ∶ Indifferent between holding risky asset and safe asset at time 1, state D.

γU(ĥDD)(1 − dYDD)

p̂D − dYDD
= 1

Marginal Investors, unknown

ĥπ0: Indifferent between holding risky debt with leverage and holding the safe asset. There

are now two possibilities for this agent, rather than 4. Just as before, at time t = 1 in

state M , the agent can either hold the safe or risky asset. However, at time t = 1 in

state D, ĥπ0 will be the most optimistic agent still in the market, forcing him to hold

the risky asset. Thus, we have the following two possibilities

M safe.
(γU(ĥπ0) + γM(ĥπ0))(p̂M − p̂D)

π̂0 − p̂D
= 1

M risky: here the payout of the asset in state M at time 1 is multiplied by the

continuation value of the asset in time 2 since we have specified that ĥπ0 will hold the

risky asset.

γU(ĥπ0)(p̂M − p̂D)

π̂0 − p̂D
+ (

γM(ĥπ0)(p̂M − p̂D)

π̂0 − p̂D
)(

γU(ĥπ0)(1 − dYMD)

p̂M − dYMD

) = 1

Market Clearing, known

Time t = 0, Risky Asset:

(1 − ĥM0) (
1 + p̂0
p̂0 − π̂0

) = 1

Time t = 1, state D, Risky Asset:

(ĥπ0 − ĥDD)(
1 + p̂0

p̂D − dYDD
) = 1
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Time t = 0, Risky Debt:

(1 − ĥM0) (
1 + p̂0
p̂0 − π̂0

) = (ĥM0 − ĥπ0) (
1 + p̂0
π̂0 − p̂D

)

Market Clearing, unknown

Time t = 1, State M Asset: We are unsure whether ĥMM ∈ (0, ĥπ0) of ĥMM ∈ (ĥπ0, ĥM0).

This issue can be resolved by considering both cases, solving for equilibrium, and checking

that ĥMM is indeed in the specified interval.

ĥMM ∈ (0, ĥπ0):

(ĥM0 − ĥπ0) (
1+p̂0
π−p̂D ) (p̂M − p̂D)

p̂M − dYMD

+
(ĥπ0 − ĥMM)(1 + p̂0)

p̂M − dYMD

= 1

ĥMM ∈ (ĥπ0, ĥM0):

(ĥM0 − ĥMM) (
1+p̂0
π−p̂D ) (p̂M − p̂D)

p̂M − dYMD

= 1

B.3 Default in the Dynamic 3-state Model

This section isolates the role of default in the dynamic model in two ways. First, it considers a

surprise injection of wealth to bailout agents who lost money to default. Second, it maps the

3-state model onto binomial models, in which there is no default, and compares equilibrium

in each case.

B.3.1 The Default Mechanism

We demonstrate the impact that default has on asset prices at time 1 by considering the

counterfactual scenario. We now suppose that in the down state, holders of risky debt receive

an unexpected, exogenous wealth increase at time 1. This can be thought of as a bailout for

these agents.

Recall that previously, holders of risky debt had lost some of their wealth in the down

state because they were paid back pD < π0 < pM . Now, the suppose that the holders of risky
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debt are compensated the difference between pM and pD. Notice that because this wealth

shock is unexpected, it does not change the equilibrium at time 0 and only at time 1. In the

down-state, we now have h ∈ (hπ0, hD0) holding pM units of wealth and h ∈ (0, hπ0) holding

1 + p0 units of wealth. The equations defining equilibrium are:

Marginal Investor
γU(hDD)(1 − dYDD)

pD − dYDD
= 1

Market Clearing

(hD0 − hπ0) (
1+p
π0

)pM

pD − dYDD
+

(hπ0 − hDD)(1 + p0)

pD − dYDD
= 1.

Using the same specifications as before, as well as the results for hD0, hπ0, π0, p0 and pM

from the previous subsection, we find that

hDD = 0.5976, pD = 0.6378, down crash = 33.08%.

Without this injection of cash, pD = 0.606874 and the crash was 36.33%. The bailouts,

offsetting the default mechanism, increases the asset price in D and lowers the volatility.

However, it is important to note that this result only occurs if agents do not expect the

wealth shock. If agents anticipated the bailout at time t = 0, then the increase in the pD

price will lead to higher margins at the initial time period and the expectation that all debt

is actually safe.

B.3.2 Comparison With Dynamic Two-State Model

We can compare the volatility in the dynamic three-period model to the dynamic 2-period

model in several ways. We can normalize by the expected payoff of the asset, normalize by

belief in the up state, as well as normalize by the belief in the downstate.

We first consider normalization by the expected payoff of the asset. We use γU(h) = h

and γM(h) = h(1 − h) to for the probabilities in the three-state model. We want to set the

belief of the upstate, ϕ(h), in the two-state model so that for every agent, the ultimate
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expected payout of the risky asset is the same in the two models. That is,

h+h2(1−h)+h(1−h)2+h(1−h)2αdYDD+(1−h)3dYDD = ϕ(h)+(1−ϕ(h))ϕ(h)+(1−ϕ(h))2dYDD,

where dYMD = αdYDD. Solving the above, we find that

ϕi = 1 +

√
(dYDD − 1)(1 − h)2(dYDD − 1 + (α − 1)dYDDh)

dYDD − 1
.

Letting α = 3, we can solve for equilibrium in the two-state dynamic model.

When we normalize by belief about the up state, we have ϕ(h) = γU(h) = h. Alternatively,

if we normalize by belief about the down state, we need 1 − ϕ(h) = γD(h).

In summary, we obtain the following differences by normalization.

Dynamic 3-State Dynamic 2-State
Collateralized debt No Collateralization Expected Payout Belief Up Belief Down

p0 .970 0.9531 0.9470 0.9351 0.9876
pD .602 0.6069 0.6339 0.6116 0.7314

crash 37.91% 36.33% 33.06% 34.593 % 25.94%

Note that for every normalization, the price crash in the down state of the three state

world is greater than the price crash in any of the two-state models and that the biggest

price crash is obtained in the case of debt collateralization. Furthermore, the price of the

asset in the down state is lowest in the three-state world with debt collateralization.

This phenomenon occurs precisely because the three-state model with collateralization

has more bankrupt agents at time 1 in the down state when compared to the two-state

models. Thus, the agents who are left to buy the asset are more pessimistic and do not value

the asset as highly.

B.4 Comparative statistics

We now briefly explore how price and marginal investors change depending on difference

between the payout in the dYMD and dYDD states. To do this, we fix the payout of the asset in

dYDD to be 0.1 and solve for equilibrium for a full range of dYMD. These results are presented

in the table below.
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dYMD hM0 hD0 hπ0 hMM hDD p0 pM pD π0 i0 M crash D crash
.2 .909 .859 .609 .619 .567 .939 .695 .611 .689 .88% 25.96% 34.95
.3 .937 .869 .631 .665 .563 .953 .766 .607 .754 1.56% 19.7% 36.3%
.4 .958 .875 .649 .712 .562 .963 .827 .604 .811 1.93% 14.2% 37.3%
.5 .974 .876 .668 .759 .558 .971 .880 .602 .862 2.04 % 9.43% 37.98.%
.6 .985 .872 .687 .807 .556 .977 .923 .601 .905 1.95% 5.53% 38.5%
.7 .993 .865 .707 .855 .555 .981 .957 .600 .940 1.77% 2.48% 38.9%
.8 .997 .857 .723 .904 .554 .984 .981 .599 .966 1.59% .2995% 39.1%
.9 .999 .851 .734 .954 .554 .985 .995 .599 .981 1.47% -1.01% 39.3%

Table 4: Comparisons of equilibrium for different values of dYMD

It is interesting to note that for high enough values of dYMD, the price crash in state

M is negative (the price increases). For high values of dYMD there is so much divergence in

the payoffs of the risky asset that at time t = 1, once the possibility of state D occurring is

eliminated, agents are more optimistic about the payout of the asset and are thus willing to

buy more of the risky asset.
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