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Abstract

How does our current era of “techno-pessimism” connect with the history of industrializa-

tion, and what can it teach us about future growth? To explore these questions we analyze

the effects of different forms of technological change on human capital accumulation and

economic growth. We develop a growth model with over-lapping generations that endog-

enizes skill acquisition and TWO forms of technical change, one that raises the quality of

existing capital goods, and one that increases the number of types of new capital goods.

The former kind of technological change obsoletes certain middle-range skills but can pro-

mote higher-range abstract skills. The model demonstrates the possibility of technological

cycles, where the development of new capital goods slows down and gives way to disrup-

tive quality improvements of existing capital goods. The approach here allows us gain new

insights into theories of unified growth, historical patterns of de-skilling technologies, and

current debates about automation and skill acquisition.
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1 Introduction

Recent technological developments have caused a great deal of consternation, as new technolo-

gies appear to be replacing middle and even some quite high skill level jobs thought previously

to be immune to the forces of codification and mechanization. These trends however, are neither

a-historical nor unprecedented — they have deep roots in the early industrialization of western

Europe and North America.

This work endeavors to develop a growth theory that carefully develops the evolution and inter-

action between technological change and education. Specifically, we develop a growth model with

over-lapping generations that endogenizes skill acquisition and two forms of technical change, one

that raises the quality of existing capital goods, and one that increases the number of types of

new capital goods. The former kind of technological change obsoletes certain middle-range skills

but can raise the value of higher-range abstract skills. These technological changes in turn affect

education decisions by households.

The framework allows us to consider the potential historical developments in technology and

education over the last few centuries. It also provides the potential to unify our growth expe-

riences in history and relate them to our own economic circumstances.1 Indeed it is important

to take such theory and extrapolate forward to understand long-run economic growth patterns

that we might expect in the near future.

Different Forms of Technological Change

The approach taken here allows us to tackle some big questions. For example, why is there

such pessimism over technological progress these days, even as we witness the rapid advancement

of many new technologies? One strain of the argument that we are experiencing technological

stasis (Cowen 2011 among others) hinges on the idea that the world has essentially run out of

big ideas. Gordon (2000) suggests the big fundamental innovations have all been made in the

1This work is however not intended to be a proper unified growth theory, as framed by Galor (2011). For

example we abstract away from fertility here and therefore cannot comment on the nature or timing of the

Demographic Transition.
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Figure 1: Historical Rates of Innovation

 

 

 

 

 

 

 

 

 

 

 

Source: Huebner (2005). Points are an average over 10 years with the last point covering the period from 1990

to 1999.
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late 19th and early 20th centuries.2 Field (2011) is even more precise, declaring the 1930s as the

most productive decade in terms of technological breakthroughs.

The techno-pessimistic sentiment is nicely captured by the top diagram in Figure 1 (replicated

from Huebner 2005). It charts rates of innovation per capita for the world beginning in the

fifteenth century and projected into the twenty-second. Here we see a steady rise in innovative

activity, followed by a burst consistent with the Industrial Revolution. Innovations appear to

peak in the late 19th century, after which point innovations start declining. At its current trend

the world will fall below innovation rates achieved during the Middle Ages at some point this

century!

At the same time however, research activities appear to continue unabated. Taken from the

same study, the bottom diagram in Figure 1 charts patents per capita for the United States

over the past two centuries. While patent filings took a steep drop in the inter-war years, they

have remained roughly consistent since the second World War. Jones (2002) in fact suggests

patent filings rose during the second half of the twentieth century. And Zoulay and Jones (2006)

suggests that although there are more people in research oriented positions than ever before,

each is far less innovative than their predecessors.

To deepen the puzzle, lack of technological change would seem inconsistent with the recent

notion of technological unemployment — the fear that machines and robots are starting to

automate many of our jobs. Brynjolfsson and McAfee (2014) suggest machine intelligence has

been on the rise for some time and will soon be everywhere, creating uncertainty over once stable

middle-skill jobs.3 By this line of reasoning, current technological change has been robust and

transformative, even if a bi-product of this change is unwelcome.

This work attempts to reconcile these different views on the past and future paths of technology

by distinguishing between two types of technological change. In our model innovators can either

“tinker” with existing forms of technologies, or perform more basic research to develop new

2These include electrification, internal-combustible engines, indoor plumbing, petro-chemicals, and the tele-

phone.
3An apt anecdote from their book is about the Dutch chess grandmaster Jan Hein Donner, who was asked

how he would prepare for a chess match against a computer. Donner replied, much like a dour Luddite from

centuries ago: “I would bring a hammer.”
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technologies. A key feature here is that successful tinkerers will improve the quality of existing

technologies but in the process obsolete the skills associated with the old technology. Basic

researchers on the other hand create brand new industries, producing future opportunities for

mid-skilled workers but leaving current groups of mid-skilled unharmed.4 Here we echo the idea

that society can provide too little investment in basic research (Jones and Williams 2000), and

provide a mechanism to help understand why.

This approach also has the benefit of connecting the past with the present. For example

Khan (2015) suggests that early growth arose mainly from the efforts of tinkerers (resolving

“perceived industrial problems”), but then this eventually gave way to the scientists, engineers

and technicians performing more basic and breakthrough research. The model here may shed

some light on how these two apparent growth regimes are related. Further, the model suggests

our current economy may resemble in some ways early industrialization and the age of tinkerers.

Contrary to Brynjolfsson and McAfee (2014), who suggest that what we face in the 21st century

is somehow new, we allege that the technological hurricane we currently see is one that we have

weathered before.

This paper argues that technological progress always takes two distinctive forms. If we consider

the second Industrial Revolution of the late 19th century, for example, we see that railroads re-

placed stagecoaches, steamships replaced sailboats, and mechanized cranes replaced rudimentary

pulley systems. These technological advances rendered groups of stagecoach drivers, sailors, and

pulley operatives obsolete. Yet at the same time technological changes involved newer production

methods requiring machinists, engineers, repairmen, managers and financiers newly-trained in

the new methods. Similarly, today we see digital technologies replace certain production pro-

cesses, and thereby replace certain mid-skilled workers, while other more novel digital methods

require new engineers and designers. There is indeed a rise of machines, but in some ways it is

a familiar one.

4This approach is similar in spirit to Aghion and Howitt (1994), which also looks at job destruction with

technological growth. Their work looks however at unemployment, whereas we look at the effects to education.

Young (1993) includes both invention and learning-by-doing in this model, without focusing on skill obsolescence.
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Education and Technology

Another large question we wish to address is the potential effects of technological change on

education, both historically and recently. For example, it has been argued that early industrial-

ization could not have been consistent with larger demands for education because skill premia

appear to be falling during this period (Clark 2004, Clark and Hamilton 2003). In our model we

also can observe falling premia for high-end skills. But our model also demonstrates that early

industrialization could have been both de-skilling (as routine labor is increasingly obsoleted by

the efforts of tinkerers) and fostering growth in higher-end skills (as those on the higher end of

the educational distribution shy away from risky mid-skills).

Further, the model demonstrates how gradual increases in high-level abstract human capital

can occur during the “age of tinkerers.” This gradual rise would then be able to reach a critical

level where sustained long run micro-inventions (new machine blueprints) would be possible.

The approach is also consistent with the idea of slow growth in living standards during early

industrialization, with more rapid growth as the economy transitions to more robust inventive

activities.

Yet at the same time, we will see that sustained innovation can be consistent with falling

rates of education. To the extent that highly educated individuals are necessary for sustained

inventive activity, this can threaten a growth slowdown and a renewed emphasis on “tinkering.”

We will argue later in the paper that new injections of highly educated people may be necessary

through governmental or institutional channels (Goldin 2003) to sustain economic progress.

Related to the effects of technologies on education are their potential effects on income in-

equality. Does their exist a growth-inequality tradeoff? Galor and Tsiddon (1997) find that

polarization in the early stages of development may be necessary for a future growth takeoff. We

argue something similar here, although the mechanism is quite different.

We also acknowledge that there may be differences between skills and tasks (Acemoglu and

Autor 2010). This distinction may be crucial when certain skills become obsolete. In these cases,

one’s acquired skill may not relate to one’s current job, and this will naturally affect income

inequality. This paper acknowledges that new technologies can sometimes be disruptive, or even

outright destructive, and sometimes they can lead to great wealth and shared prosperity.
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Related Literature and Findings

This work fits in with a number of growth literatures. The first are growth models which

generate cycles of economic activity. These include models focused on adoption and implemen-

tation of general purpose technologies such as Helpman and Trajtenberg (1998) and Howitt

(1998). Other works generate cycles by differentiating between technological breakthroughs and

improvements, such as Cheng and Dinopoulos (1992), or creating a delay in implementation of

new technologies as in Felli and Ortalo-Magne (1997). The technological cycles generated here

will stem from a different source than those produced in these works.

Another strain of literature aims to unify different phases of economic growth in one consistent

model. These so-called “unified growth” theories endeavor to model Malthusian growth dynamics

and also allow for a transition to modern economic growth (Galor and Weil 2000. See Galor 2005,

2011 for detailed summaries of this literature). Our paper abstracts away from fertility, and so

cannot comment on either Malthusian traps or the Demographic Transition. We do however

attempt to understand long-run phases of technological progress and education in history with

this approach.

Finally our model joins those that make a distinction between fundamental and secondary

innovation. These include Young (1991,1993), Lucas (1993), Jovanovic and Nyarko (1996) and

Redding (2002). In this final work fundamental knowledge destroys a portion of secondary

knowledge, where in our model quality improvements destroy certain skills. More recently and

perhaps more closely related to this paper is Acemoglu and Restrepo (2015); here periods when

secondary innovation (which they call ‘automation’) runs ahead of more fundamental innovation

will tend to self-correct. In their model automation lowers labor costs, inducing newer labor-

intensive technological developments. Here we suggest two differences that fundamentally change

this outcome — endogenous skill acquisition, and the inclusion of a (relatively) unskilled service

sector. In a world where mid-level education or training must be associated with a specific and

established production process, routinization will destroy not only jobs but skills. The relative

scarcity of surviving mid-level skills can then raise routine labor costs, inducing more routiniza-

tion. Further, new technologies eventually require new mid-level skills to operate them. But if

displaced mid-skilled workers end up in unskilled service occupations, education can not rise to

7



meet this demand. Thus rather than self-correct, we demonstrate the potential for routinization

to be self-reinforcing.

Along with technological cycles, this work produces a number of other novel insights. Skill

obsoleting technologies can increase rates of education. This is a startling claim but it makes

sense, particularly in today’s context where education is still perceived as the gateway to higher

earnings even though technological changes appear to be destroying the relevance of many of

these skills. Technological obsolescence in fact boosts education on both the low and high ends

of the educational spectrum. As we will demonstrate later in the paper, the former acts like

purchasing a lottery ticket (with a higher potential payout), while the latter acts like purchasing

insurance.

On the other side of the coin, fundamental technological increases can dampen education.

Lower human capital levels can slow down this kind of innovation in the future, particularly if

high-level skills are necessary for consistent micro-inventive activity. Thus we suggest technolog-

ical cycles can emerge unless governments can someone “inject” human capital into the economy,

though educational subsidies or immigration policies.

The remainder of the paper proceeds as follows. Section 2 relays the key features of the model.

Section 3 simulates the economy under various technological scenarios, and demonstrates how

technological cycles can form endogenously. Section 4 provides some parting thoughts.

2 The Model

We begin with a utility and production structure with unbalanced technological change rem-

iniscent of Baumol (1967), with extensions by Autor et al. (2003), Weiss (2008), and Autor

and Dorn (2013). The economy consists of two sectors which produce goods or services. These

products are imperfectly substitutable in utility. For any period t, the planner’s problem is to

maximize an aggregate consumption bundle given by:

C =
(
γC

σ−1
σ

s + (1− γ)C
σ−1
σ

g

) σ
σ−1

(1)

where Cs are services, Cg are manufactured products, and γ is the relative weight placed on
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services in utility. σ ≤ 1 determines the elasticity of substitution between goods and services.

We will assume throughout that σ > 0, so that goods and services grossly complement each

other in utility (a standard assumption in the literature). For now we suppress time subscripts.

There are three basic forms of labor. Purely unskilled workers (Lu) use no human capital and

can only work in the service industry (as manual laborers). Those who invest in human capital

can invest either in mid-level routine skills, or high-level abstract skills. A key feature in this

model is that mid-level routine skills will be specific to a particular manufacturing sector, and

faces potential obsolescence. High-level abstract skills on the other hand is not tied to a specific

task and faces no potential for obsolescence.

We will build an endogenous growth model that will have two potential types of technological

changes — those that improve the quality of existing machines, and those that produce machines

altogether new. There will thus be three (potential) types of capital goods. Kold is capital used

in the production of already extant old machine types. K∗ is capital used to make machines of

newly improved quality. Finally Knew is capital devoted to constructing machines from brand

new blueprints.

Production of service and manufacturing goods involve the following respective production

functions:

Cs = Ys = Ls (2)

Cg = Yg − poldKold − p∗K∗ − pnewKnew (3)

Yg = L1−β
a Xβ (4)

where Ys is total production of services, Yg is total production of manufactured goods, [pold, p∗, pnew]

is a vector of capital prices, and X is a capital aggregator which we explain below.

9



2.1 Production

Factors are paid their marginal products. Unskilled service workers earn wu, mid-skilled

workers earn wr times the mid-level human capital they accumulate, and abstract workers earn

wa times the high-level human capital they accumulate. We will see in section 2.3 that human

capital amounts will differ across individuals.

Capital is used only in the manufacturing sector. A portion of the final consumption good

must be allocated to the production of capital for the building of old-type machines, and may also

be devoted for the building of improved-quality machines and/or new-type machines. Capital

fully depreciates after each period. The full capital aggregator X is given by:

X =

Nold∫
0

qold(i)
(
xold(i)

)α
Lr(i)

1−αdi+

N∗∫
0

qnew(j) (x∗(j))α dj +

Nnew∫
0

qnew(k) (xnew(k))α dk (5)

where qold is the quality of old-type machines which are not being quality-upgraded, and qnew is

the quality of old-type machines which have been tinkered with and are being quality-upgraded.

The first term shows manufacturing production in old sectors. The second term shows production

in sectors where the quality of machines (whose blueprints already exist) have been improved

that time period. The final term shows production in sectors using newly invented machines.

Thus at any given time t there exists N∗ ⊂ [0,∞) of existing machine types that are being

quality-upgraded, and Nnew ⊂ [0,∞) of machine types newly invented. Also note that new-type

machines are always produced at the highest current level of quality.5

Note that mid-level routine skills can only be employed in old manufacturing sectors, and that

these skills are assigned to a specific sector. Each mid-level skill can only be used in its assigned

sector. This assumption reflects the idea that mid-level skills are typically linked to a specific

industry or production process. Historical examples include the major areas of growth during the

Industrial Revolution such as textile production and steam engineering — education for workers

in these industries typically took the form of training in industry-specific tasks.6 Of course there

5This is merely a matter of convenience.
6Economic historians have suggested that even basic literacy was not an important skill during this period

(Mitch 1982).
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are many examples of industry-specific skills used today in production and craft occupations,

operative and assembler occupations, and transportation, construction, mechanical, mining, and

farm occupations, many which are threatened by technological obsolescence (Autor and Dorn

2013).

As is standard in the endogenous growth literature (Romer 1990, along with many others) we

will assume that qualities and capital uses are symmetrical in each area of production. While

this will not strictly be correct, since sectors will improve at different rates and have different

levels of quality, we will be interested in average values, and so taking average measures will

suffice. So for example, the total amount of capital used in old manufacturing sectors can be

written as

Kold = N oldqold
(
xold
)α
Lr1−α (6)

where now Lr denotes the total stock of mid-skilled capital used in production across all sectors,

qold is the average quality of old machines, and xold is the average amount of capital in each

sector. Note that we can then write xold as
(
Kold/N oldqold

)1/α
. Using similar notation for

quality-upgraded machines and new machines, we have:

X =
(
N oldqold

)1−α
(Kold)αL1−α

r + (N∗qnew)1−α (K∗)α + (Nnewqnew)1−α (Knew)α (7)

Given this, perfectly competitive manufacturers demand different types of capital and labor,

given technological levels (both in terms of number of machine blueprints and average qualities

of machines), machine prices and wages. We thus have six potential first order conditions:

∂Yg
∂Kold

= βL1−β
a Xβ−1

(
∂X

∂Kold

)
= pold (8)

∂Yg
∂K∗ = βL1−β

a Xβ−1

(
∂X

∂K∗

)
= p∗ (9)

∂Yg
∂Knew

= βL1−β
a Xβ−1

(
∂X

∂Knew

)
= pnew (10)
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∂Yg
∂La

= (1− β)L−β
a Xβ = wa (11)

∂Yg
∂Lr

= (β)L1−β
a Xβ−1

(
∂X

∂Lr

)
= wr (12)

(
γ

1− γ

)(
Cs
Cg

)−1
σ

= wu (13)

Equations (8) – (10) are machine prices, which will be charged by machine producers. Equations

(11) – (13) are ex ante spot wages for raw labor or human capital. We discuss each in tern.

2.2 Technological Change

We will assume an over-lapping generations framework where individuals live for two time

periods. On the technology side, we assume that “young” innovators decide either to invest

resources to invent new-type machines, or to spend their time tinkering with old-type machines,

and that they can enjoy the fruits of their labors when they are “old” — that is, for one time

period only.

We will assume that the marginal cost of producing a machine is equal to its average quality.

Since old machines are competitively produced, we have pold = qold.

An innovator who newly improves the quality of an existing type of machine at time t (we

will call this sort of individual a “tinkerer”) has monopoly rights to that machine for one period.

These machines were part of N old in t − 1 (and linked with specific mid-skilled workers) and

become part of N∗ during t. Manufactures however remain free to purchase an older, inferior

quality machine at a cheaper price — these machines would be perfectly substitutable. Thus

producers of newly improved machines would engage in limit pricing, and charge p∗ = qnew.

An innovator who invents a new type of machine also has monopoly rights to it for one

period. There are no substitutes for this machine. These machines become part of Nnew. Given

iso-elastic demand, this machine producer charges a constant mark-up over marginal cost of

machine production. Thus pnew = (1/α) qnew.
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Note that since it is possible that at any given period there exists both machines that are

newly of higher quality, and also machines that are from new blueprints, the average quality of

old machines will adjust as these newer machines become old machines the following period. If

we have Nt as the total number of machine blueprints at time t, we can say that the average

quality of old machines is given by the following “law of motion” of machine quality:

qoldt =

(
N old
t

Nt

)
qoldt−1 +

(
N∗
t−1 +Nnew

t−1

Nt

)
qnewt−1 (14)

The first term captures the quality of machines that have remained old, while the second term

captures the quality of machines that are newly old.

Finally, note that if machines from a sector are upgraded by tinkerers, that sector can no

longer employ routine labor, the idea being that that mid-level skill is no longer applicable, and

that only when that sector goes back to being an “old” sector that mid-level skills be used again.7

Thus a fraction of erstwhile routine laborers will be unable to use their human capital (more on

this in next section). Let us define φ as the fraction of sectors that were old last period which

are being upgraded in terms of quality this period. This is given by:

φ ≡ N∗

N∗ +N old
(15)

Figure 2 shows an example of the quality and quantity of machines when both machine quality-

upgrading and new machine inventions occur. Quality improvements raise a certain fraction of

machines vertically — this vertical rise shows up within a sub-group of old machines the following

period. Newly invented machines on the other hand push the machines out horizontally.

It is important to note that this form of technological change is skill-replacing, but not in a

form that is unskill-biased (as in O’Rourke et al. 2013). In this world unskilled workers are in

service sectors, which are technologically stagnant. Instead skills are obsoleted, and new-updated

skills will be employed when the technology becomes more seasoned. One might also consider

this a form of short-term automation. Contrary to Acemoglu and Restrepo (2015) however, the

7We do not allow for the possibility for manufacturers to simply hire the old machines and use existing routine

workers trained in the old technology. Given limit pricing firms can be induced to marginally prefer adopting the

newly upgraded machines without any routine workers.
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Figure 2: Illustration of Growth in Both Quality of Machines and New Machines
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implies new innovation.
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new technologies will be linked with new skills next period.

2.3 Endogenous Skill Choice

As individuals live for two time periods, we suggest that they maximize an expected utility

function given by:

EU (Ct−1, Ct) =
(
Cω
t−1 + E (Ct)

ω)1/ω (16)

where ω < 1. Individuals are indexed over a number line of constant size L. They are born with

a pair of potential endowments that rise linearly with this index. That is, individual l is born

with a pair of potential endowments [arl , a
a
l ] — when young they can choose to invest in one

type of skill, and receive the endowment in the next time period. At time t − 1 the individual

chooses what kind of worker they would like to be at time t. If the individual chooses not to

get any education, she will work as an unskilled laborer for both time periods and earn 1 + wu

each period. If the individual chooses to become a mid-skilled worker she will invest her time at

t− 1 getting an education, thus earning no wages. Her education is devoted to a specific sector

i (for analytical convenience this will be randomly chosen). At time t she acquires arl units of

mid-skilled human capital and earns wrta
r
l , provided that i remains an old sector at time t. If

machines from sector i have been tinkered with and improved in terms of quality, l’s routine skills

have become obsolete and she becomes an unskilled worker. Finally, if the individual chooses to

become a high-skilled worker she will invest her time at t− 1 getting a high-level education, also

earning no wages. At time t she acquires aal units of abstract human capital and earns wat a
r
l with

certainty.

Given these payoffs, the individual who chooses to be unskilled receives a utility of:

Uu = ((1 + wu)
ω + (1 + wu)

ω)
1/ω

(17)

The individual who chooses to be semi-skilled worker faces an ex ante utility of:

Ur = (1 + (1 + El)
ω)

1/ω
(18)
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where El is the expected wage that individual l can earn when investing in mid-skills. Finally,

the individual who chooses to be a high-skilled abstract worker receives a utility of:

Ua = (1 + (1 + aalwa)
ω)

1/ω
(19)

Given these potential utilities, agent l decides whether to work two periods as an unskilled

worker, to invest their time at t− 1 to receive arl units of mid-skill human capital to potentially

use in period t, or to invest their time at t− 1 to receive aal units of high-skill human capital to

use in period t.

Note that there is uncertainty over whether one’s investment in mid-skilled human capital

will actually pay off at t, since there is a possibility that those skills will become obsolete with

technological upgrading. Here we treat one’s expected wage for routine labor linearly:

El,t−1 = (1− φ)arl,twr,t + φwu,t (20)

That is, with probably φ individual l finds that his mid-level human capital is obsolete, and

he instead works as an unskilled worker.

Finally, assume that potential skill endowments rise at linear rate γ1 along the labor index

for mid-level routine skills, and at linear rate γ2 along the index for high-level abstract skills.

Further assume that for a range of [0, L̂], aal is zero. That is, those under L̂ can never become

abstract workers. This suggests that individual l is endowed with γ1l units of potential mid-level

human capital and γ2(l − L̂) units of potential high-level human capital.

With this set-up, we can solve for equilibrium levels of each type of worker by calculating

threshold points where individuals would be indifferent between two outcomes. We illustrate

these two points in Figure 3. First, define L1 as the worker who is indifferent between being an

unskilled worker and investing in routine skills. This individual’s expected return to routine skill

investment is EL1 = (1− φ)γ1L1wr + φwu, and her utilities are such that Uu,L1 = Ur,L1 . Solving

for L1 we get

L1 =
((1 + wu,t−1)

ω + (1 + wu,t)
ω − 1)

1/ω − 1− φwu,t
γ1 (1− φ)wr,t

(21)
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Figure 3: Utility from Different Endowments
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Here L = 8, wages are constant, and wu < wr < wa. In this illustrative example, those below L1 = 2.6 will be

unskilled, while those above L2 = 5.95 will be highly skilled. Those in the middle will opt to be routine-skilled.

Note that wage changes would shift these utility curves, changing threshold levels L1 and L2.
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Next we define L2 as the worker who is indifferent between being a routine worker and being

an abstract worker. This individual’s expected return to routine skill investment is EL2 =

(1− φ)γ1L2wr + φwu, and her utilities are such that Ur,L2 = Ua,L2 . Solving for L2 we get

L2 =
γ2L̂wa,t + φwu,t

γ2wa,t − (1− φ) γ1wr,t
(22)

Given wages, we can use these thresholds to solve for equilibrium levels of each type of labor.

Figure 4 shows how this looks.

The area under each linear line between the thresholds indicate the total mass of each type

of human capital, at least ex ante. Ex post of course there will be less Lr, as fraction φ will be

reallocated to unskilled jobs — this will be uniformly random across all endowment levels. Ex

ante labor amounts are thus given by:

Lu = L1,t−1 + L1,t + φ (L2 − L1) (23)

Lr = (1− φ)

(
(L2 − L1) γ1L1 +

1

2
(L2 − L1) γ1 (L2 − L1)

)
(24)

La =
(
L̄− L2

)
γ2

(
L2 − L̂

)
+

1

2

(
L̄− L2

)
γ2
(
L̄− L2

)
(25)

2.4 General Equilibrium

A static general equilibrium follows from the above discussion. Given an existing level of

machine blueprints and average machine quality, equilibrium is given by solving (8), (11), (12),

(13), (21), (22), (23), (24), and (25) for equilibrium values of capital, wages, threshold levels and

labor amounts. Note that in this case φ is zero, as there are no machines being upgraded and

so no uncertainly over whether or not certain mid-skilled workers will find their human capital

obsoleted.

With technological changes will come changes to marginal products of factors and changes

to the factors themselves through changes in education choice. We can anticipate some of the

changes by observing our equilibrium conditions. First, observe the equilibrium threshold person
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Figure 4: Equilibrium Amounts of Human Capital
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The total amount of routine human capital, Lr, is given by the trapezoid in the top diagram. The total amount

of abstract human capital, La, is given by the trapezoid in the bottom diagram.
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indifferent to investing in mid-skill human capital or remaining an unskilled worker (equation

21). If wu falls or wr rises, it is clear that L1 will unambiguously fall. That is, the threshold

person falls down the spectrum of workers, fewer people choose to remain an unskilled worker,

and more people choose to invest in mid-level skills.

With quality improvements, φ will rise, and the effects on education at this lower end of the

skill spectrum is unclear. On the one hand rises in φ makes investing in routine skills a more

risky proposition, and so more may wish to remain unskilled. On the other hand, this also can

make wr rise, so more individuals may choose to invest in mid-level skills.

Looking at potential changes in L2 (equation 22) allows us to understand the marginal choice

at the higher end of the educational spectrum. If no quality changes, wu is not part of the

calculation. We see that while the effects of higher abstract wages have an attenuated effect

on higher-end human capital (wa is in both numerator and denominator), higher routine wages

unambiguously raises L2 and so raises mid-skills and lowers high-skills. Here we see that stable

higher-paying routine jobs pulls people into routine occupations from the higher educational

spectrum.

With quality improvements on the other hand, the level of unskilled wages now matters for

the calculation. We can suggest the following:

Proposition 1 A sufficient condition for ∂L2

∂φ
< 0 is wu < γ1L̂wr.

Proof : Quotient rule.

That is, a greater share of sectors going through quality improvements will induce more people

to invest in higher-level skills as long as the skill premium between mid-skilled and unskilled

workers is sufficiently high. Intuitively, a higher φ means a higher probability of receiving a

wage of wu. This would be a big fall in earnings for those at the higher end of the endowment

spectrum. Better then to be an abstract worker with a stable wage.

3 Simulating Technological Change

Here we simulate the economy described in the prior section to demonstrate how different

forms of technological change influence our variables of interest. It will be convenient to first
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demonstrate each form of technological change separately and exogenously. We then combine

both by developing an explicit technology sector made up of a separate group of innovators

who endogenously decide to either “tinker” with existing technologies or develop altogether new

technologies.8

3.1 Quality Improvements Only

We now demonstrate changes in the economy when the quality of machines are improved.

Here we do this exogenously, by assuming that in each period a greater fraction of sectors are

experiencing quality upgrade (φ rises each period). The total number of sectors here however

is kept fixed — that is, there are no new machines being invented and so no new sectors being

created (that is , Knew = 0).

We simulate this economy for ten periods. In each period, we exogenously have 10 percent

more sectors being quality upgraded (we start with twenty percent of all sectors being upgraded).

The number of existing machine blueprints on the other hand is held fixed.

Figures 5 and 6 demonstrates the results from this simulation. A novel and somewhat surpris-

ing finding is that this form of technological change actually enhances rates of education. This

is true for both ends of the educational spectrum.

First, consider the lower end. Even though routine-level jobs are becoming more and more

risky, the “investment rate” for routine skills rises over time. We see this since L1 falls over time.

Why? As routine jobs become increasingly scarce, the value of having a still-existing routine job

rises. At the same time, as more and more individuals get reallocated from mid-skill to unskilled

jobs, wages for unskilled labor falls. Both together induce more investment in routine skills at

the lower end of the endowment distribution. We can clearly see that while ex ante routine labor

rises (as more and more individuals choose to invest in mid-level skills), ex post routine labor

falls (and more and more of these investments become obsoleted).

Investing in routine skills in this world is like buying a lottery ticket with a higher and

8For all simulations, parameter values are set as follows. γ = 0.5, σ = 0.5, α = 0.5, β = 0.5, ω = 0.1, γ1 = 0.5,

γ2 = 0.75. Initial levels of technologies are Nold = 5 and qold = 1.5. Quality improvements occur by a factor of

1.1. Qualitative directions of variable changes appear insensitive to specific parameterizations, provided σ > 0

(that is, provided goods and services are grossly substitutable).
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Figure 5: Effects from Exogenous Quality-Improvements in Machines on Labor-Types and Wages
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With machine quality improvements we see abstract labor rise but routine labor fall. The latter falls due to

the ever-widening gulf between those who invest in mid-level skills and those who can ultimately use those skills

in manufacturing. We also observe reverse wage polarization — mid-skill worker wages rise while abstract and

manual labor wages fall.
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Figure 6: Effects from Exogenous Quality-Improvements in Machines on Education Thresholds
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With machine quality improvements we see rates of education rise. This is reflected by a lower threshold for the

individual indifferent between being an unskilled worker or a routine worker (top diagram), and a lower threshold

for the individual indifferent between being a routine worker or a high-skilled worker (bottom diagram).
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higher potential payout, but a lower and lower probability of winning. This can also explain

the burgeoning of an informal sector, where workers migrate to cities hoping to get a higher

paying job (Harris and Todaro 1970). This would then be consistent with urbanization and the

displacement of workers in early industrialization, as well as in developing regions today.

On the other end of the education spectrum, we see that abstract labor rises. Some of

this has to do with the fact that more and more people producing services raises the value of

manufactured goods. Notice however that abstract wages are also falling, so something else must

be going on. More workers choose to invest in high-level skills because unskilled wages are falling.

As mentioned in the previous section and as we learn from Proposition 1, the risk of getting a

lower-paying unskilled job raises the relative value of getting a secure abstract job. So contrary

to the lower end who are embracing risk because of a higher potential payoff, the higher end

is willing to forgo some earnings for greater earnings security. For both reasons, the economy’s

rates of education are rising over time, even though routine human capital falls over time due to

obsolescence.

We should also note that this form of technological change is quite disruptive. It actually

lowers incomes because it eliminates an erstwhile valuable amount of mid-level skills. This serves

to put downward pressure on all wages. While this is admittedly an extreme scenario, what

is important is looking at these wages relative to wages when fundamental innovations occur

(illustrated in the next section).

An interesting aspect of the model is what it suggests about inequality. Here we see that with

disruptive quality improvements wage inequality compresses on the high end (abstract wages

rise relative to routine wages) but rises on the low end (routine wages rise relative to unskilled

wages). This makes sense given the technological environment — part of the value of getting a

high-level education is the insurance it provides against obsolescence. On the other hand, those

on the lower end find mid-level education attractive, even if some get thrown into low-skilled

service occupations. So in this world we observe the opposite of wage polarization — mid-skilled

workers get the biggest boost.
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3.2 New Machine Blueprints Only

Here we demonstrate the case where new machine types are exogenously “invented” each time

period. Machine quality in this case remains constant at qold for all machines, whatever their

vintage, and K∗ is always zero. Specifically, we simply raise the level of new machines by 0.5

each time period for 10 periods. The results of this exercise are demonstrated in Figures 7 and

8.

Figure 7: Effects from Exogenous Growth in Machine Blueprints on Labor-Types and Wages
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With growth in new machine blueprints we see declines in skilled labor and rises in unskilled labor. Routine labor

faces no obsolescence, which allows all wages to rise. We also observe wage polarization, especially at the lower

end of the distribution.

First notice that because this form of technological progress does not destroy human capital,

all wages rise, albeit at different rates. Technological progress raises the marginal product of

high- and mid-skilled workers, raising their wages. It also raises the wages for unskilled service

jobs because the relative value for services rises.
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Figure 8: Effects from Exogenous Growth in Machine Blueprints on Education Thresholds
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With growth in new machine blueprints we see rates of education fall on both ends of the distribution. This

is reflected by a higher threshold for the individual indifferent between being an unskilled worker or a routine

worker (top diagram), and a higher threshold for the individual indifferent between being a routine worker or a

high-skilled worker (bottom diagram).

26



We also observe skill polarization. High-skill labor falls, and mid-skill routine labor falls by

more. Looking at (21), we see that given φ = 0, unskilled wages rising faster than mid-skilled

wages will pull people away from mid-skills at the lower end of the endowment distribution.

Looking at (22), on the other hand, we see that routine wage increases exert a powerful upward

pull on L2 That is, due to no insurance value for high-skilled education, technological progress

lowers overall investment in high-level skills.

With respect to the discussion of Autor and Dorn (2013) we have a couple of new findings.

One is that employment polarization can occur even if capital and routine skills are not grossly

substitutable. The other finding is that this polarization from technological change occurs at the

low end of the skill distribution, but is somewhat attenuated at the high end of the distribution.

Here we observe de-skilling as a function of the existence of a non-productive unskilled-intensive

service sector.

3.3 All Together Now — An Endogenous Technology Approach

The growth scenarios illustrated above highlight the effects of each type of technological change

on education, employment and wages. Of course if technological changes arise from the micro-

inventive activities of researchers and tinkerers, education and employment adjustments can in

turn affect both the direction and extent of future technological developments. Past research

has demonstrated how factors of production and technologies “directed” at different factors can

interact in economically important ways (Acemoglu 1998, O’Rourke 2013, Rahman 2013). Here

we attempt to endogenize technological changes to observe interactions in this framework.

To accomplish this we now develop a simple technology sector to explore the possibility of

two technology types evolving endogenously. We assume a separate and fixed mass of “nerds,”

in the spirit of Legros et al. (2014). A nerd will either tinker or truly innovate.9 A nerd who

decides to innovate will increase the number of new machine blueprints by some fixed amount η.

A nerd who decides to tinker on the other hand will raise the quality level of a certain quantity

of old machines. These activities do not involve any uncertainty — while tinkering will involve

9We do not allow nerds to “vegetate,” to use the verbiage in Legros et al. (2014.) — that is, nerds will always

be active in some technological activity. We also assume a nerd can only innovate or tinker; she cannot do both.
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quality upgrades to sectors which will be randomly assigned, nerds know exactly how much their

efforts will translate into innovation or quality improvements.

While we treat nerds as a fixed group distinct from the general population, nerds are still

motived by value and cost. In order to innovate, nerds must expend a resource cost c upfront.

Similar to Rahman (2013), we assume this cost changes in technological factors. Specifically,

we assume that research costs rise in the total number of existing blueprints N , but fall in the

average quality of machines q. This captures the idea that tinkering with existing technologies can

spillover into areas of new research. History abounds with these types of spillovers.10 Finally,

we also assume here that research costs also fall in La, the idea being that positive research

spillovers are generated by higher amounts of high human capital (Lucas 1988).

The value of a new innovation for a nerd, V , is the ability to charge a mark-up to manufacturers

for their machines for one time period (in the next period the blueprint becomes public knowledge,

and the machine is competitively produced). Specifically, this value is given by:

V =

(
1

α
qnew − qnew

)
x̄new (26)

Innovative activities among nerds continue as long as V ≥ c(N, qold, La), where ∂c
∂N

> 0,

∂c
∂qold

< 0, and ∂c
∂La

< 0.

As nerds innovate research costs rise, since innovation raises N . If after all the nerds innovate

research costs remain smaller than the value of innovation, no tinkering in the economy takes place

and no existing machine-types are quality upgraded. If on the other hand V = c is reached and

there remain nerds who have not innovated, the rest of the nerds tinker with existing technologies,

thereby raising both N∗ and qnew. Tinkering requires no resource cost, but also generates no

profits since the greater quality of upgraded machines is exactly offset by their higher costs. Thus

we suggest that in every period nerds first scramble to research and earn profits up to the point

where V = c.

Results from this case are presented in Figures 9 and 10. In the beginning we see very limited

growth in new machine blueprints. With low initial levels of both q and La, the costs of research

10Mokyr (2002) provides many historical cases where “prescriptive” knowledge can then lead to new insights

which bolster “propositional” knowledge.
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Figure 9: Effects from Both Types of Growth on Labor-Types and Wages
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Figure 10: Effects from Both Types of Growth on Education Thresholds
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are prohibitively high, and so most nerd activity is devoted to tinkering. The evolution of the

early economy resembles the case displayed in figure 4, where wages tend to fall and rates of

education tend to rise.

However, as both q and La rise, the costs of innovation begins falling. This induces an

increasing share of nerds to produce new innovations instead of tinkering. Consequently N

begins to rise. Further, as the economy grows the value of innovation itself (V ) rises as the

market scale for new innovations expand. This reinforces the growth in new machine blueprints.

Thus we have a framework for thinking on the transition from early industrialization to a mod-

ern growth regime. In this economy nerds transition from mostly tinkering to mostly innovating.

This would seem basically consistent with the historical transition from early industrialization

(with modest improvements in technologies and small rises in per capita GDP) to modern eco-

nomic growth (with more breakthrough innovations and robust per capita growth) (Galor 2005,

Khan 2015).

A feature that may be surprising however is that here modern growth is associated with

falling rates of education. Yet this is wholly consistent with unbalanced technological progress

where factors are compelled to work in less productive sectors of the economy (Baumol 1967)

if those sectors are less skill-intensive. Here we provide a cautionary tale that when education

is devoted to sectors with the potential for technological improvement, such improvement can

in fact lower the incentives for education. Service occupations such as food service workers,

hairdressers and beauticians, recreation occupations, security guards, janitors and gardeners,

cleaners, home health aides and child care workers become more attractive positions and require

little formal education. In order to understand how education advanced so rapidly in the United

States during the early 20th century then, one must look to factors such as institutional or

governmental support, as described extensively by Claudia Goldin and others (Goldin 03).

Finally, the implications for future growth are in one sense bleak. They suggest that as La

continues to fall, the costs for subsequent innovation rise to the point where nerds inevitably go

back to mostly tinkering. This simple framework also suggests that economies can face waves

of tinkering and breakthrough innovation. The “techno-pessimism” of our current age may be

in part a function of prohibitively high costs of true innovation. The goods news is that this
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can pave the way for later technological marvels. Governments can potentially help speed the

transition by subsidizing the accumulation of abstract skills, or raising the scale of the market for

breakthroughs (Acemoglu and Linn 2004). The structure developed here allows policy makers

to consider certain factors to ensure that robust innovative activities continue to grow their

economies.

4 Conclusion

This paper explores the interactions between different forms of technological changes and

different types of skilled labor. We derive a number of new insights in order to better understand

the evolution of technologies and human capital over the last few centuries.

Given the technological cycles generated by the model, one might wonder about the possible

phase of economic growth we in the United States currently find ourselves. In truth we see aspects

of both. On the one hand, techno-pessimistic grumblings about low productivity growth and

job insecurity suggests the presence of a “tinkering” economy. Yet we also see evidence of skill

and employment polarization, which in our model is consistent with more robust technological

activity.

While what we present here is a closed macro model designed to represent the overall economy,

countries might be better characterized as a series of economies spatially integrated (Autor and

Dorn 2013). Such an extension may help us further explore which regions are better characterized

as tinkering economies (marked by burgeoning informal sectors and job displacement) and which

as fundamentally innovating ones (with robust overall wage growth).

Another aspect is to look at the economic evolutions of different economies to see if there is

any evidence of such technological cycles over the long run. Evidence of technological slowdowns

and re-emphasis on tinkering may motivate educational policies designed to help spur virtuous

feedback between high-level human capital and innovative breakthroughs.
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