//Ervin Meneses
//Code modifies pwm signal sent to speed controller based on power
measurements using a P.I Control Algorithm

#include <Servo.h> // Includes servo.h file from arduino library
/******************************/

// Initializes variables

//Define Variables we'll be connecting to PID
int Setpoint=950; //Enter Desired Setpoint
float Pm, Output;

float Error, ITerm,DErr,LastPm,LastAdj;

Servo myservo;// creates a servo pin

int throttle; // creates throttle variable

float signal=0;//Signal sent to ESC

float stampthro=0; // Will keep track the the throttle signal the receiver

float deltathro;// change in throttle varaible

//Define Tuning Parameters

int Kp=.7, Ki=0.05, Kd=0;// These Parameters work and have been tested with
setpoint 500W, 600W, and 950W

/* The Current Sensor uses a smoothing algorithm to make the read curent value
more reliable.

Reads repeatedly from an analog input, calculating a running average and printing it
to the computer.

Keeps 10 readings in an array and continually averages them.

Define the number of samples to keep track of. The higher the number, the more the
readings will be smoothed,

but the slower the output will respond to the input. Using a constant rather than a
normal variable let

use this value to determine the size of the readings array.

*/

//Current sensor variables
const int numReadings = 10;
float readings[numReadings]; // the readings from the analog input

int index = 0; // the index of the current reading
float total = 0; // the running total

float average = 0; // the average

float Im = 0; //Initial current value measured

//voltage sensor variables
float val = 0; // variable that stores analog value of voltage sensor

float vout = 0;

float Vm = 0;

float R1 =56000; //R1 resistor value

float R2 =10000;//R2 resistor value

float deltaPWM=0;//adjusted pwm signal variable

/******************************/

//Start setup
void setup(){

// initialize serial communication with computer:
Serial.begin(57600);// Make sure baud is equalk to this number

//initialize the variables we're linked to
LastPm=0; // Last power measurment used in the derivative term
LastAdj=0;// Last value that we changed the PWM width by

// initialize all the readings to O:
for (int thisReading = 0; thisReading < numReadings; thisReading++)
readings[thisReading] = 0;

// set pin 9 as motor pin
myservo.attach(9);

//sets pin 5 as the signal receiving pin
pinMode(5, INPUT);

}

/******************************/

//Start loop
void loop()

{

//voltage variables

val = analogRead(A0); //read voltage from analog signal

vout = (val/1024)*5;// converts signal to value between 0-5V
//Measured voltage

Vm = ((vout*(R1+R2))/R2)*.973; // Calculates input voltage

//Current Variables

// subtract the last reading:

total= total - readings[index];

// read from the sensor:

readings[index] = analogRead(A7); //Raw data reading

readings[index] = (readings[index]-510)*5/1024/0.04-0.04;//Data
processing:510-raw data from analogRead when the input is 0; 5-5v; the first 0.04-
0.04V/A(sensitivity); the second 0.04-offset val;

// add the reading to the total:
total= total + readings[index];
// advance to the next position in the array:
index = index + 1;
// if we're at the end of the array...
if (index >= numReadings)
// -.wrap around to the beginning:
{index = 0;}
// calculate the average:
average = (total/numReadings); //Smoothing algorithm
(http://www.arduino.cc/en/Tutorial/Smoothing)
Im= average;

Pm=Im*Vm; // Measured power

throttle = pulseln(5, HIGH,25000); // (Reads width of pwm signal going into pin 5
from Receiver)

//Computer error variable for Output Calculation
Error=Setpoint-Pm;//Error
myservo.writeMicroseconds(throttle);

// Conditional statements to determine whether or not PID controller should
engage

if (Error>0)// Meaning that the power measurment input is below our setpoint

// then we just let the PWM signal from the receiver go throguh to the ESC
{ myservo.writeMicroseconds(throttle);

}

if(Error<0) // if the power measurment input is greater than the setpoint then we
want to PID to take action

{

//Once you know the error is negative then we need toadjust the PWM

while(Error<0)// The while loop will check the Error and reduce the PWM signal
until the error is positive again

// Within this while loop there is another while loop that is used to maintain/send
the adjusted PWM signal at the point at which it is right below the setpoint

{

// Begin Power calculation within the while loop
//voltage variables
val = analogRead(A0); //read voltage from analog signal
vout = (val/1024)*5;// converts signal to value between 0-5V
//Measured voltage
Vm = ((vout*(R1+R2))/R2)*.973; // Calculates input voltage

// subtract the last reading:

total= total - readings[index];

// read from the sensor:

readings[index] = analogRead(A7); //Raw data reading

readings[index] = (readings[index]-510)*5/1024/0.04-0.04;//Data
processing:510-raw data from analogRead when the input is 0; 5-5v; the first 0.04-
0.04V/A(sensitivity); the second 0.04-offset val;

// add the reading to the total:

total= total + readings[index];

// advance to the next position in the array:
index = index + 1;

// if we're at the end of the array...
if (index >= numReadings)
// -.wrap around to the beginning:
{index = 0;}
// calculate the average:
average = (total/numReadings); //Smoothing algorithm
(http://www.arduino.cc/en/Tutorial/Smoothing)
Im= average;

Pm=Im*Vm; //measured power
throttle = pulseln(5, HIGH,25000); // (Reads width of pwm signal going into pin 5
from Receiver)

Error = Setpoint-Pm;// Checks on setpoint everytime there is reiteration

// PID Calculations
[Term+=(Error*Ki); // Term due to integral
DErr=-(Pm-LastPm);// Term due to derivative

Output= Kp*Error +ITerm +Kd*DErr;

if (Output<-90){ Output=-90;} // limits our ouptut to the maximum amount of
error we anticipate before engaging the SAE Power Limiter
//else if (Output>0){Output=0;}

// Convert output to a value to a width in PWM which we should reduce the current
PWM

// we know that a 1% increase in throttle corrsponds to a PWM width increase of
.004ms

// From the current, Voltage, and power data collected in the fall term I found that a
.5 increase in the throttle position caused an increase of about 160W when near the
//engaging point of the SAE power limiter

// .5 increase in throttle position translates to a .08ms (80us) increase in PWM
width

// deltaPWM is a negative number
deltaPWM= Output*80/160;// converts the PID output to a pwm width by which
the current throttle position should be adjusted by

// Varaibles to remember for each time loop is called
LastPm=Pm; //Last power measured equals current power measurement
LastAdj+=deltaPWM;//Sums up the adjusted PWM values

Kd=Kd;
Ki=Kij;
Kd=Kd;

signal=throttle+LastAdj;//difference between actuall throttle signal and value by
which it needs to be adjusted

myservo.writeMicroseconds(signal); // Sends adjusted PWM signal to ESC
stampthro=signal-LastAdj;// throttle signal that keeps a steady level

}// close first while loop

/ /At this point we know that the error>0, the signal is some pwm signal and that
the stampthro= throttle, which is greater than 0

}// end of if statement error<0

// at this point we can keep the power around 500w,but [cant reduce it

// This while loop keeps keeps you at a level near the Set point until you throttle
down below the "signal”
while (stampthro>0)

{

myservo.writeMicroseconds(signal);
throttle = pulseln(5, HIGH,25000);

if (throttle<=signal)
{break;}

// clear variables
stampthro=0;
signal=0;
LastAdj=0;

}// close void loop

