FOUNDED 1795

Stand-Alone Device for Chord Detection

Timothy Michael Palace

February 28 2015

Background

Music Theory

- Study of the components that music is comprised of
 - sound, pitch, melody, harmony, notation, rhythm, form, etc
- Studied by musicians and people who are interested in further appreciation of musical compositions

Note

- 12 different notes with many octaves
- The most basic component of western music
 - -when combined build scales, chords, keys, etc.

Chord

- Harmonic structure
- Made up of a combinations of notes

Motivation

Musician's Tool

- Musical Analysis
- Transcription
 - Manual process is tedious and time consuming
- Improvisation

Building Block

- Proof of concept to build on for bigger projects
 - -Tonality Detection
 - -Automated Transcription

Stand-Alone Device for Chord Detection from Auditory Input

Stand-Alone

- Definition: "able to operate without control from another system, company, etc." (Merriam-Webster)
- For this project:
 - Not be simply a computer program
 - All Data Acquisition occurs on the machine
 - Operate independently of location, user, attachment chords

Chord Detection

 Extract and recognize the harmonic structure of a 'chord' from a signal

Auditory Input

- Relating to sound
- Not Amplified
- Not symbolic data (MIDI Format)

Design Requirements

Functional

- Input: Acoustic Signal
 - From microphone or AUX cable
 - Not MIDI format
- Output: Display on screen on device
- Accurate
 - -Must detect chords correctly at least 75% of the time
- Operate at a meaningful rate for musicians
 - − ~1-2 seconds (for music at 120bpm)
- Stand-Alone
- User Friendly ©

Non-Functional

- Cost affordable: < \$200
- Ethical: must not cause copyright infringement

The Problem

E note (played on guitar)

E chord (played on guitar)

Top-Level Schematic

Design: Hardware Options

Device	Audio Input Capability	Programming Language	Operating System	Cost
Raspberry Pi	3.5 mm jack Or USB Device	Python, Java, C, C++, Scratch, or Ruby	NOOBS (New Out Of Box Software) Or Linux	~ \$40
Arduino	No direct input -requires extra wiring and coding	C/C++ using open-source IDE	DuinOS	\$25-\$70
FPGA	Personal Experiences proved this to be difficult	VHDL Or Verilog		>\$100

Hardware

Raspberry Pi Model B+

- Used for Data Acquisition
- Tying all components together

USB Sound Card

- Used for getting auditory input
- 3.5mm jack for input/output

LCD Screen

- 16x2 character display with keypad
- Used for display
- Used for controlling recording

Software/Algorithm

Software

- Raspbian (debian distro of Linux)
- Python

Algorithm Overivew

- Take in data as waveform.
- Transfer data to frequency domain using Fourier Transform
- 3. Extract note information from frequencies
- Create pitch-class set (set of length 12, one for each note)

4.)

- 5. Compare pitch-class set to chord templates to detect chord
- 6. Display guessed chord

6.)

Design

Sampling

- Trade off between time and sampling rate
- Decided on 12000Hz

Transform & Array Manipulation

- Fourier Transform
- Change from bin values → frequency values for index
- Add up each note's intensity from corresponding frequency across all octaves
 Forms Pitch-Class Set and then normalize it
- Take the 3 max values (assuming triad) and compare to chord templates
- Display 'guessed chord' or if no chord found, display highest note intensity

The Solution

E note (played on guitar)

E chord (played on guitar)

[0.13551649, 0.17193301, 0.13968407,0.1583991, 0.76749613, 0.25365, 0.16233895, 0.16606936, 0.23051037, 0.23438108, 0.1207705,0.27780134]

[0.04241156, 0.05910824, 0.11698372, 0.14734106, 0.70756931, 0.12755939, 0.12580443, 0.4603361, 0.15432546, 0.09964817, 0.07407452, 0.44640032]

[0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0]

[C, C#, D, D#, E, F, F#, G, G#, A, B]

[0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1]

(E)

(E) (G)

(B)

UNION C O L L E G E

Results

Device

- Portable
- Easy to use
- Stand-Alone
- Input: Microphone/Auxiliary Chord
- Output: Display on Device

Software

- Accurately detect the 12-notes in the 12-tone western music system
- Accurately detect 12 basic major chords
- Accurately detect 12 basic minor chords
- Executes algorithm quickly

Future Work

Device

- Make a housing for the device
- Add a battery pack so doesn't need to be plugged into wall
- Obtain a more suitable microphone
 -current one being used is from a head-set

Software

- Add functionality for chords with embellishments
 -7^{ths}s, Diminished, Augmented
- Add functionality so don't need to press a button before detection
- · Add more filtering
- Test capabilities of device more thoroughly

The End

Questions?

