
Remote Water Metering in Venecia, Nicaragua
Jeffrey Wettstein

ECE 499 Capstone Design

Advisor: Professor Hedrick

March 17th 2015

	

	

2	

Executive Summary:
	

The senior Capstone Design Project is the culmination of over three years of

undergraduate work in electrical engineering, and other related fields. The project allows

students to demonstrate their knowledge on a tangible design. Starting from a blank slate,

the Capstone process asks students to carefully move through every stage of design in

order to create the most effect output.

 Water shortage is a major problem for the entire world including the United

States, but particularly in developing countries like Nicaragua. The community of

Venecia, Nicaragua has a unique water problem. Community members leave taps running

in fear that if they are shut off, they will not turn back on. This behavior leads to the

overconsumption of a very valuable and scarce resource. One way to reduce water

consumption is to make the user aware of just how much water they are sing. The system

discussed in this paper is a prototyped design developed in conjunction with community

leaders of Venecia. The final prototype provides real-time remote metering of water to

demonstrate the benefits of conservation. Data is collected and processed at the meter

before it is transmitted wirelessly to a display site. At the display site, users can access

real-time flow information as well as totalized values. This system will be installed in

Venecia later this spring.

	

	

3	

Table of Contents

SECTION PAGE

EXECUTIVE SUMMARY .. 2

LIST OF TABLES AND FIGURES ... 4

INTRODUCTION ... 5

BACKGROUND .. 7

DESIGN REQUIREMENTS .. 12

DESIGN ALTERNATIVES .. 17

PRELIMINARY PROPOSED DESIGN ... 20

REVISED DESIGN ... 27

FINAL DESIGN AND IMPLEMENTATION .. 32

PERFORMANCE RESULTS .. 42

PRODUCTION SCHEDULE .. 46

COST ANALYSIS ... 48

USER’S MANUAL .. 49

DISCUSSION AND CONCLUSIONS ... 51

REFERENCES .. 53

APPENDIX .. 55

	

	

	

	

	

4	

List of Tables, Figures, and Equations

	

	

Type Page Description

Figure 1 11 Photo of Venecia, Nicaragua

Table 1 12 Preliminary Design
Requirements

Figure 2 15 Amplitude Shift Keying

Figure 3 15 Frequency Shift Keying

Figure 4 17 EKM Water Meter Error Plot

Figure 5 20 EKM 2” Pulse Output Water
Meter

Figure 6 21 Hall Effect Sensor Diagram

Figure 7 21 Hall Effect Output Plot

Equation 1 21 Flow Rate Calculation

Figure 8 22 Arduino Uno Microcontroller

Figure 9 23 433 MHz RF Transmitter

Figure 10 26 Preliminary System Block
Diagram

Table 2 27 Revised Design Requirements

Figure 11 28 USB Voltage Levels

	

Type Page Description

Figure 12 28 RS-232 Voltage Levels

Figure 13 28 RS-232 Shield

Figure 14 30 Packet Protocol

Figure 15 32 Meter-Side System Diagram

Figure 16 33 Meter Test Setup

Figure 17 34 Packet Modem and Handheld Radio

Figure 18 34 Sample Arduino Output

Figure 19 35 Arduino Output Waveform

Figure 20 35 RS-232 Shielded Arduino

Figure 21 36 Display-Side System Diagram

Figure 22 37 Display Code (Baud Set)

Figure 23 37 Display Screenshot

Figure 24 38 Display Code (Parsing Scheme)

Figure 25 40 Final Display Screenshot

Figure 26 41 Display Code (Quitting)

Figure 27 43 Periodic Arduino Output

Figure 28 46 PERT Chart

Table 3 48 Cost Analysis

	

	

	

5	

Introduction:
Engineers Without Boarders (EWB) is a group whose goal is to develop

relationships around the world and help create physical and social improvements to their

environment. Often times, projects that EWB take on deal with supplying water to groups

who have limited access. The Vermont Professional Chapter has taken on a project in

Venecia, Nicaragua. The community currently has no existing method to monitor the

consumption of water. This lack of information causes households to continuously run

their water, in fear that it won’t turn back on. The purpose of this project was to build a

device that convinces households that there is water, and as long as it is used

appropriately, it will not run out. By simply presenting the metering data, I hypothesize

that this will be enough to change water use behaviors and substantially lower overall

consumption. Although water metering and data collection is common, this project

encompasses more than just that. It aims to trigger changes in water use, leading to a

more sustainable and flourishing community.

To accomplish the goals outlined above, I built a system that obtains water-

metering data, and presents it in a fashion that can be understood by all. Obtaining the

metering data requires a piece of hardware, which allows water to pass through it and

simultaneously “counts” the quantity of water. Devices like this exist in the form of pulse

output water meters. The meter is installed in line with the existing pipe, and uses a

magnetic sensor to generate a pulse each time a known quantity of water flows through.

The main difference between this type of meter and a generic water meter is the ability to

read the metering data from a distance. With metering information available it will need

to be conditioned and processed in a way that it can be sent wirelessly to a pre-

determined site. Sending stand-alone pulses wirelessly is challenging. It can be difficult

	

	

6	

to differentiate them from other wireless noise that inherently exists. This is the reason

for the data conditioning stage. Radio frequency, or RF, employs radio waves to

accomplish the task of transmission. The frequency of these radio waves will be chosen

to meet requirements like transmission distance, and avoidance of interference. After the

data has reached it’s final destination, some processing needs to occur. The processing

unit will extract the conditioned information from the radio signal and transform it back

into usable data.

This report will begin by giving a brief background of water metering and it’s

applications throughout time. These applications encompass aspects of economics,

environmental sustainability, and social trends. Next, more details regarding the design

requirements will be introduced. These design requirements give the details necessary to

select useful, and implementable components. This section will also provide insights into

the major functions of the system. Through a literature search, this report will give a

justification for the approach of building the system, component by component, as well

as the overarching goal of reducing water usage. Finally, the report will outline the how

the system was constructed, and some of the details that went into accomplishing the

design requirements.

	

	

	

	

	

	

7	

Background:
	

History of Water Infrastructure

 The idea of supplying a community with water distant from the epicenter of

population has been tinkered with for thousands of years. In early civilization, it was

advantageous to live at higher elevation. It was easier to protect inhabitants with an uphill

position. This was not always necessary, which allowed communities to form close to

natural bodies of water like springs, rivers, and aquifers. At higher elevations new

methods had to be developed to get water to citizens. The Romans were first in

developing large-scale water distribution systems. Networks of supply tunnels fed central

water towers, where it could be rationed to the community (Bromehead 184). In late 19th

century America, the need for an adequate supply of drinking water was growing.

Population was rising, commercial establishments were forming, and new public health

standards were introduced. Cities like Boston experienced political tension when

deciding whether supplying water would be a private, or public matter (Broomehead

193). With the growth of water infrastructure in the United States and around the world,

suppliers began charging based off water consumption. In order to accomplish this,

devices were needed to keep accurate records for each home, spawning the current era of

water metering (Melosi 243).

Origins of Water Metering

A water meter is not unlike a gas or electricity meter. It is a device that provides

the supplier with information to determine how much to charge customers. In recent

decades, there has been a change in mentality regarding water supply. The business of

domestic water supply has evolved from a public service, to a revenue-making endeavor.

	

	

8	

In order for the companies supplying the water to make money, it has become more

common to monitor households’ water use. For some, this was beneficial. Before

metering, high-value properties paid higher monthly water rates than lower value

properties. If a high-value property were not using a lot of water, a meter would enforce

this and lower their monthly cost of water. On the contrary, households that used a lot of

water now were required to pay for the high use (OFWAT, Water Meters).

Although the main implementers of water meters tend to be private water

suppliers, there has also been an increase in metering for other purposes. In Brazil,

metering data provides customers with reports containing water usage patters, and

projected savings due to changes in consumption (Lima). In developing countries like

Brazil, the data compiled by metering can be helpful in raising awareness of

overconsumption. Two classifications of water metering can now be established.

Metering for profit, and metering for the advancement of developing regions of the

world. The aim of this project is to employ the second of the two classifications and

provide Venecia with useful information regarding water use.

Economic Benefits and Drawbacks of Metering

Countless studies have been conducted to determine the economic usefulness of

water metering. A study conducted by Aquacraft Inc, and the National Research Center

examined water use in metered apartment buildings vs. non-metered buildings. The data

showed that metered buildings used 15% less water per year (Apartment Meters). This

study supports my hypothesis that providing water usage data leads to a decrease in

overall consumption. A research project performed by Dutch researchers Harrison

Mutikanga and Saroj Sharma showed that water metering in Kampala, Uganda reduced

	

	

9	

water usage by 18%. Kampala is a developing city in Africa that previously had no

means to measure water consumption.

Regulations have not been fully established to enforce how third parties would

charge for water consumption. In multi-family homes, landlords are not given specific

regulations to follow if they wish to sub-meter each tenant. The implications of this are

large. This means that landlords could potentially profit off their tenants water usage by

overcharging (Apartment Meters). To inhibit this situation from occurring, state level

policies must be established that would not allow landlords to profit of tenant’s water use.

Fortunately this project does not involve any aspect of charging for water use. The

primary goal is reduction in water consumption and highlighting to potential

environmental benefits that water metering can bring to the table.

Environmental Impacts of Metering

 Global water consumption has tripled since 1950. In 2010, the yearly

consumption rate was estimated to be over 4,000 cubic kilometers. This mammoth

number can be attributed to the fact that populations have risen in parts of the world past

a sustainable limit (Postel 2332). While water scarcity is mainly a problem for developing

countries, the United States has spent billions of dollars trying to tackle the challenge of

preserving this necessary resource (Lundeen 4).

 The primary consumer of water is agriculture, accounting for more than two

thirds of all consumption. The economy in Nicaragua is focused on the agricultural

sector. 15% of the countries exports are coffee. Among beverages, coffee requires the

most water to produce. A study claims that over 1,000 liters of water goes into producing

	

	

10	

one liter of coffee after growing, processing, and preparation is taken into account.

Venecia is a coffee producing community, meaning that a lot of water is used to sustain

their current lifestyle. If water prices were to increase or a shortage was to occur, it would

be difficult for the community to sustain the quality of life they have now. By metering

the water consumed for drinking, bathing, and cooking, the overall consumption can be

cut down; which would leave more water for agriculture (Water Use: Thirsty Work).

Engineers Without Borders

 Engineers Without Borders is an organization that began in 2000. The goal of the

organization is to collaborate with community partners to design and build sustainable

engineering projects in the United States, and internationally. The Vermont chapter of

EWB took on a project in Venecia, Nicaragua to help deal with issues surrounding water.

More specifically, these issues include water shortages and water quality. Today, the

community has the necessary infrastructure set up to address these issues. Although the

problems surrounding quality have been solved, water shortage still affects the

community. In collaboration with EWB-VT, I hope to assist in solving the water shortage

problem that Venecia is facing. A photo of Venecia is shown below in Figure 1.

	

	

11	

Figure 1

	

	

12	

Design Requirements (ECE 498):

The table below outlines the design goals and how each will be accomplished.

More details regarding each goal can be found below the table with justifications for each

choice of component.

Design Requirement/Goal Means of Accomplishing

Obtain metering data is a form that can be
processed

Implement a meter that can withstand maximum
flow rates of up to 8L per second. Meter must

have a readable output such as a pulse

Calculate flow rate from pulse output of
water meter and create a data package.

Implement Arduino code that uses pulse
frequency to determine flow rate. The Arduino

will output data at an interval chosen by the user.
Data will be packaged with error-checking

information

Transmit data 400 meters to display site Use RF wireless transmission at 433MHz. The
transmitter will use ASK to encode the data into

the radio wave.

Receive data RF receiver paired with transmitter will detect
signals at a frequency that has been chosen for

transmission.

Decode data and prepare for display A microcontroller will be implemented to obtain
the data out of the RF signal. The data will then
be converted from binary form back to decimal,

and stored/displayed for use in water
consumption analysis.

Table 1

The method that water meters use to measure flow rate can vary from meter to

meter. There are three types of velocity-based water meters. One type of velocity-based

meter uses turbines. Turbine meters are typically used for applications where the volume

of flow will be quite high. Fire hydrant water meter use the turbine method. The

	

	

13	

advantage to this system is that it can handle very high flow rates, while the disadvantage

is that it is typically only used for pipes that measure about 12 inches across. The second

type of velocity based water meter is called a compound water meter. A compound meter

is used when the velocity of water can vary from low to high. The device has two

different measuring components. One is for high flow rates, while the other is used for

low flow rates. To switch between the two measuring components, a valve is used to

direct the water to one of two channels. The last type of velocity-based meter uses either

electromagnetic or ultrasonic principles. The electromagnetic meter is based on fluid

induction principles and the ultrasonic meters uses sound waves to obtain a water volume

reading. The benefit of this type of meter is that it can also be used for large volume

measurements. The disadvantage is that they are typically used for fluid other than water

(Lima).

While the methods of measuring flow listed above do work well, the type of

meter I implemented was a volume based turbine meter. When the water flows through,

an impeller spins. The impeller has a magnet on it that passes by another magnet located

on a stationary part of the meter. When the two magnets pass by each other, a pulse is

generated. This effect is called the Hall effect. A pulse is generated each time a known

amount of water passes through, allowing the user to calculate the total flow. The benefit

of single and multiple jet volume meters is that they typically do not clog. This is

important, as a low failure rate is necessary.

The turbine meter I used also has a pulse output. The pulses correspond to a

known amount of water, and can be counted to calculate a total flow rate over time. To

count the pulses or calculate a flow rate, a microcontroller was implemented. The

	

	

14	

microcontroller’s duty was to calculate pulse frequency, then use the known information

about the meter to determine flow rate. Attaching other information to data is a common

practice is wireless information transfer. Protocols are developed in order to effectively

accomplish the task of error-free data transfer.

During my visit to Venecia in December, I got a chance to do wireless testing.

This was an important step in determining how much power would be needed to transmit

over 400 meters without errors. The testing involved handheld radios that had a large

frequency range, and multiple power output settings. I stood at the metering side by the

collection tanks and asked someone to carry the other radio to the display site. Using

three different power settings and many different frequencies in the hundreds of MHz

range, it was determined that 500mW was sufficient to transmit voice the required

distance. All frequencies tested (from 120MHz up to 440MHz) successfully

accomplished the task of transmission. Knowing this information, I was able to use a

similar power output and frequency in the range tested in Venecia. Due to Nicaragua’s

developing state, the equivalent of our FCC has not yet allocated all usable frequencies.

The radios implemented in the final design will be programmable, which will allow for

adjustments in the transmitting frequency if necessary.

After an appropriate frequency was selected, the mode of transmission was

considered. Amplitude shift keying (ASK) and frequency shift keying (FSK) are two

common types of wireless transmission. An ASK transmitter uses the amplitude of the

wave to encode the data. Figure 3 below shows the methodology used in ASK. ASK is

more susceptible of noise corruption because noise is generally additive. Since the data is

encoded in the amplitude of the waveform, noise has an easier time corrupting the signal.

	

	

15	

FSK uses frequency to code data. Figure 4 below shows how FSK works when

transmitting a binary signal. FSK is typically more reliable because noise is less likely to

corrupt the frequency of the signal, rather than the amplitude. This device will be located

in a relatively remote region of Nicaragua, meaning there will be less interference from

other signals to corrupt the transmission used for this project.

Figure 2

Figure 3

	

	

16	

 After the data has been transmitted, it will need to be received and displayed.

Receiving the data will be as simple as having a radio operating on the same frequency.

To reverse whatever transmission protocol was used, processing will occur after the

radio. The display needed to accomplish a few tasks. It needed to create a structure for

the data, and put it on a screen in a way that was clear to the user.

	

	

17	

Design Alternatives:

EKM 2” Pulse Output Meter

The typical flows that the turbine meter will encounter in Nicaragua range greatly.

The meter will be placed after the primary collection tank, inline with the pipe that carries

water into the community. The collection tank is about 40m3 and can empty in 45

minutes when the valve is fully open. This yields a maximum flow rate of approximately

8 liters per second. Figure 4 below was taken from the data sheet of the meter that will be

used. The meter’s overload flow is 30m3 per hour or 8.33L per second. This means that at

maximum flow, the percent error will still be within reason. Ideally, the meter would

measure with a percent error within the American Water Works Association accepted

range, which is 2-3.5%.

Figure 4

The justification behind the choice to use the pulse output meter manufactured by

EKM involved several criteria to be considered. The first being that it was the most

	

	

18	

affordable meter that fit my design constraints. These constraints included things like

typical flows, reliability, accuracy, and size. The GPI TM Series meter was an alternative

I was considered. Unfortunately, this meter was made from PVC and uses potentially

dangerous solvents to attach to the pipe it sits inline with. Also, the pulse output that it

generates relies on an external power source instead of a Hall effect sensor. This means

that the batteries would need to be replaced up to every 6 months. The meter by EKM is

constructed out of stainless steel and does not need a power supply to operate.

Arduino Uno Microcontroller

 One of the main reasons why the Arduino was selected was my previous

experience working on that platform. I am familiar with the coding language used,

allowing me to create the script without much background research. This time saved can

be allocated elsewhere, in order to create a better system. The task of receiving pulses

and calculating flow rate is also very simple. Although the Arduino Uno is not a very

robust microcontroller, it was able to perform this task sufficiently to provide the

information at an acceptable rate.

433MHz RF Transmitter

 When first considering the method of wireless transmission to use, many options

seemed viable. Wi-Fi was one of those options. Unfortunately, the village that the system

will be located in does not have any Wi-Fi connections I could tap in to. Also

transmitting at Wi-Fi frequencies typically requires more power, since the signals are at a

significantly higher frequency (RF Propagation Basics). The next option I considered was

radio frequency, or RF. There are particular bands of the RF spectrum set aside for

	

	

19	

applications like this one. The decision to use a 433MHz transmitter comes from the fact

that this frequency is set aside for scientific projects. As long as the transmission power is

below a certain limit, it can be used without having to obtain a license. Radio frequency

devices also seemed to be less expensive than Wi-Fi components, which is another factor

that led me to select a 433MHz RF transmitter.

	

	

20	

Preliminary Proposed Design (ECE 498):

 A photo of the EKM meter is shown below in Figure 5. The meter is 2” in

diameter, which suites the pipe that it will be installed inline with. In Figure 4, the typical

flow rates are shown for the selected meter. The maximum flow rate as preciously

mentioned is approximately 8 liters per second. This rate corresponds to just below the

overload flow of the EKM meter. At the overload flow, the meter accuracy begins to

diminish greatly. The meter will not see flows greater than this after installation, meaning

the accuracy will remain sufficient and adhere to AWWA standards. The EKM meter

selected also generates a pulse output. It does this with a Hall effect sensor. Figure 6

below shows the mechanics behind a Hall effect sensor. The rotating disc shown

corresponds to the magnet on the turbine, while the second magnet is located on the inner

wall of the meter. When the magnet located on the turbine passes the sensor, a pulse is

generated. Sample output from a Hall effect sensor can be seen in Figure 7. The EKM

meter generates a pulse for every 0.01m3. Knowing the pulse output to flow relationship

allows for a flow rate to be calculated using time. Equation 1 below shows how the

pulses and collection are calculated to find flow rates.

Figure 5

	

	

21	

Figure 6

Figure 7

𝐹𝑙𝑜𝑤 𝑅𝑎𝑡𝑒
𝑚!

second =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑢𝑙𝑠𝑒𝑠(𝑚!)
𝑇𝑖𝑚𝑒 𝑜𝑓 𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑜𝑛(sec)

Equation 1

 The calculation to determine flow rate will occur at the metering stage of the

system. To do this calculation, a microcontroller will be implemented. The

microcontroller selected for stage is the Arduino Uno. Figure 8 below is an image of this

microcontroller. The Arduino platform offers many libraries of built-in functions. I plan

on taking advantage of a pulse counting function. With the ability to keep track of the

	

	

22	

number of pulses seen by the Arduino, the next important step will be keeping track of

time. It will be important to ensure that each time interval will be the same so the data is

as accurate as possible. Once the flow rate has been calculated, it will be stored in a

variable that is updated to reflect the total amount of water that has gone through the

meter. Approximately every 30 minutes, the data will be outputted where it will be

processed and conditioned before being sent to the display.

Figure 8

 Preparing the data for transmission means developing a unique transmission

protocol. The protocol will be developed to suite this system specifically. The data itself

will only be one part of the entire data package that will be transmitted. The data package

will include information that tells the receiver what type of information it is, error

checking information, and instructions on how to handle the data. The protocol that I will

implement has four bytes. The first byte is an identifier. Its purpose is to identify itself to

the receiver so it can be handled in the correct way. The different kind of identifier

packages could be data, error, or a request for maintenance. After the identifier byte, the

instruction byte will follow. Based off what type of information it is, this byte will tell the

receiver what to do with it. For example, if the identifier byte tells the receiver that the

	

	

23	

information contained is data, the instructions will say to decode the data and display the

flow rate. The third byte will be the data itself and the final byte will be for error

checking. Error checking can be done with parity bits, or more complex methods. For this

project, parity or a method similar to parity should suffice. This protocol will be uploaded

to the microcontroller located near the meter and prepared for transmission.

To transmit the data, I have selected a 433MHz RF transmitter. The maximum

distance of this transmitter is 2000m, which satisfies the requirement of 400m given in

the design requirements section. Figure 9 below is a photo of the transmitter, along with

the paired receiver. The transmitter uses approximately 20mW at 5VDC and has a

working voltage range of 3V-9V. The transmitter will send the total flow for each

collection period from the Arduino and use ASK to transmit the signal. Due to the

remoteness of the project site, I do not anticipate significant interference from other

devices using this frequency band. The sensitivity of the receiver is -105dBm which

means there can be approximately 80dB of loss between the transmitter and receiver and

the signal can still be received uncorrupted. The receiver module is powered with 3-

5VDC and has an antenna that is 18cm long. It will be important to position the receiver

to give it the best chance to receive the signal.

Figure 9

	

	

24	

 Once the data is received, I will interface it with another computer. The purpose

of this computer is to take the transmitted waveform and reform the data that has been

encoded in the amplitude of the waveform. The data will mostly likely be coded into the

signal as a binary representation of the flow rate. For example, if the flow rate was 20m3

per hour, that would correspond to 10100 in binary. Using this coding means that the

only processing that needs to be done on the receiver side is to take the binary

representation and convert it back to a decimal representation. Another Arduino board

could be implemented to do this. There are built-in binary to decimal converters that I

could utilize to perform this task. Once the data is back in decimal form, it will need to be

displayed. The display I will utilize for testing will most likely be a LED display or 8-bit

display. When the system is fully tested and implemented, it will mostly likely be

connected to a computer so more involved analysis can be performed. The scope of this

project encompasses testing and not final implementation; therefore using a small display

for proof of concept will suffice.

To effectively test the system, multiple stages of testing will need to be used.

First, it will be important to do water meter accuracy and reliability testing. To do this,

some sort of bench top unit will need to be built. The unit will need to be small enough

where it can be moved around if needed, but still be able to thoroughly test. The tests that

will occur on the meter will involve different flow rates, including very low rates. This is

where most meters are the least accurate, so it will be important to test this case

thoroughly. To control the flow rate, a known amount of water will be located at one end

of a pipe, and depending on the size of the hole that is opened; this will correspond to

	

	

25	

different flow rates. For example, a large opening the size of the entire pipe will result in

a higher flow rate, while a smaller opening will test the lower flow rate. It will be

important to calibrate this test set up in order to ensure the results that were being

obtained are reliable enough to base the study off. To calibrate the test set up, a known

amount of water can be placed in the container. A timer will let us know how long it

takes for all of the water to flow through, and then using the two known values, a flow

rate can be calculated. The tests of flow rate should be realistic, and simulate the flow

rates that the meter will see once it is implemented.

 After successfully testing the sensor, testing the wireless transmission system will

be next. In order to test this, data will need to be sent to the transmitter. If the first stage

of testing is complete, this could be real data referencing flow rate. If the first part of

testing is not complete, pulses could be generated. The receiver will initially be located

very close to the transmitter to ensure that the data is not corrupted at all in transmission.

After it is confirmed that the data is making it to the receiver, more rigorous tests can be

used. For example, distance tests can be completed to find the maximum, unobstructed

distance that the transmitter is capable of handling. After the distance tests are complete,

obstruction tests would be done next. It would be important to test the penetration of

different common materials, including trees, walls, and other common building materials.

Finally, it will be important to test the battery life of the transmitter.

 An overall system diagram can be seen below in Figure 10. The top section of this

figure outlines the design goals of the project. The bottom section gives the components

that will accomplish the goals above. The water from the main collection tank will flow

through the EKM meter, where the pulses will be processed and transformed into data to

Water
flow from
collection

tank	

EKM 2”
Pulse

Output
Meter	

Arduino Uno
Microcontroll

er	

Long
range RF

Link	

Arduino or
other

micrcontroller	

Meter collects
data	

Data is
conditioned

and sent
periodically	

Receiver
obtains coded

data	

Data is
decoded and
prepared for

display	

	

	

26	

be transmitted by the Arduino Uno. Next, the 433MHz RF link will transmit the data

using ASK. The data will be received and processed by another microcontroller to

prepare it for display and analysis.

Figure 10

Water
flow from
collection

tank	

EKM 2”
Pulse

Output
Meter	

Arduino Uno
Microcontroll

er	

Long
range RF

Link	

Arduino or
other

micrcontroller	

Meter collects
data	

Data is
conditioned

and sent
periodically	

Receiver
obtains coded

data	

Data is
decoded and
prepared for

display	

	

	

27	

Revised Design (ECE 499):

When building the prototyped system, opportunities and issues were encountered

along the way resulting in some changes in the original proposed design. The changes are

highlighted in the revised design requirement table below as well as the justifications for

doing so.

Design Requirement/Goal Means of Accomplishing

Obtain metering data is a form that can be
processed

Implement a meter that can withstand maximum
flow rates of up to 8L per second. Meter must

have a readable output such as a pulse

Calculate flow rate from pulse output of
water meter and create a data package.

Implement Arduino code that uses pulse
frequency to determine flow rate. The Arduino

Mega will output data at an interval chosen by the
user. Interface using RS-232 shield. Data will be
packaged by Kantronics KPC-3 packet modem

with error checking and other identifying
information

Transmit real time flow data 400 meters to
display site

Handheld radios configured to use FSK
modulation and a frequency of 145.05MHz

Receive packet and extract the desired data Paired receiver and modem obtain and unpack the
data using the additional information passed

along by modem.

Display real time current flow information
as well as totalized flow data

Use algorithm written in C to take in data one
character at a time through the RS-232 port and

display in NCURSES window

Table 2

	

	

28	

RS-232 Shield for Arduino Mega 2560

In order for the Arduino to talk to the Kantronic modem, they need to be speaking

the same language. In hardware communications, voltage levels define language. The

Arduino uses USB voltage levels, while the modems use serial levels. Figure 11 below

shows a plot of USB voltage levels, where 5V corresponds to a binary 1 and 0V

corresponds to a binary 0. In serial communications, it is common for a binary 1 to be

represented by +10V or +12V and binary 0 to be -10V or -12V. A figure of serial

communications levels is shown below in Figure 12. In order for the devices to

communicate, a level converter needs to be implemented. The converter used in this

design can be seen below in Figure 13.

Figure 11 Figure 12

Figure 13

	

	

29	

 The level converter also provides a convenient RS-232 port. With the level

converting shield on the Arduino, there are now two output ports. It is important to

configure the device to set the primary output port as the RS-232 port since the original

USB output will not be used. Universal asynchronous receiver/transmitters or UARTs are

responsible for sending data to ports. Due to the limitations of the Arduino board, a

primary UART needs to be established. The default setup uses the USB UART for

transmitting data. To configure the device to set the RS-232 UART as the master, an

assignment in the Arduino script can be made to change the primary UART on the

device. In order to use the shield, the Arduino Mega 2560 was substituted in for the

Arduino Uno.

Kantronics KPC-3 Packet Modems

 For the system to be effective, data needed to be transmitted without errors. The

Kantronics packet modems provided a commercial-grade protocol that is able to handle

real-time rates. The modems were also provided, which allowed for financial resources to

be allocated elsewhere. To build a protocol that would result in error rates as low as the

Kantronics modems one would need to dedicate a lot of time, which was simply not

available to me. This modification to the system lowered costs, increased functionality,

and allowed for more time to be spent on more critical stages of the design.

After the packet modem receives the data, it follows a protocol called x.25 to

package it with error checking information and other tags that allow for delivery

confirmation to occur between the paired modems. Figure 14 below shows what a typical

	

	

30	

packet contains when it leaves the Kantronics modem. A stream of data is often sent in a

short burst of multiple packets.

Figure 14

 As shown above, a packet contains much more than just the data. To

oversimplify, the packet contains six key pieces of information. The first is a time stamp

of when the data is transmitted. This is useful if timing is critical in a system, or the

system is using a network of sensors. For this design no synchronization needs to occur,

so it is not as useful. The next piece is information to check for errors once received. The

method of error checking used in this particular configuration is a checksum scheme.

Some of the more popular checksum schemes include parity and redundancy (Linux

Information Page). Two addresses are included in the packet: one for the source, and one

for the destination. This information is useful when operating in a region that may have a

large volume of traffic on the chosen frequency. I don’t anticipate interference from any

other packet modem, so this information will simply be along for the ride. The fifth

	

	

31	

chunk of information passes the configurable parameter settings like baud rate. After all

of that information has been packaged, the data gets attached. As previously mentioned,

the data is often broken up and sent in many different packets.

Handheld FSK Modulating Radios

 My original design called for two inexpensive fixed power and frequency

transceivers. Having adjustable, reliable, and easy to use radios was very important in

the testing process. The handheld radios provided all of that. I was able to adjust

parameters like transmit power, frequency, and transmission method (FSK or ASK).

Since these radios were only used for the prototype, I was given them to use for testing

with no cost.

Data Display

 Displaying both the real-time flow information and totalized flow information can

be done infinite ways. During my site visit, I received input from community members

about how they would like to see the data displayed. The consensus was that a simple

window that updates automatically would be sufficient. Instead of opting to buy

commercial software to do this, I decided to write the program myself. By writing the

program I was able to save on cost, as well as have total access to display parameters in

case something needed to be altered in the future. Commercial software is often closed

source and expensive.

	

	

32	

Final Design and Implementation:

Figure 15

To effectively present the design used in the final implementation, the system has

been split up into two primary sections: meter-side and display-side. The functional block

diagram for the meter-side subsystem is shown above in Figure 15. The solid boxes

represent the tasks that are completed at each stage, while the dotted boxes give the

hardware or software that will perform each task. The meter used for implementation is

the same as described in the preliminary proposed design section. When the meter

arrived, a test setup was constructed in order to generate pulses for system testing. This

test setup is shown below in Figure 16.

Pulse
generated

from meter	

Current
water flow

and
totalized
flow are

calculated	

Interface
with packet

modem	

Packet is
modulated

into
frequency
of radio

wave	

Water flow
from

collection
tank to

EKM 2”
water meter	

Arduino
Mega 2560	

LinkSprite
RS232
Shield	

Kantronics
KPC-3 and

FSK
Modulating

Radios	

	

	

33	

Figure 16

The meter was connected directly to an Arduino Mega 2560 board. The flow rate

code shown in the Appendix was uploaded to the board. To do this calculation, the code

initializes the relationship between one pulse and total flow as 0.1 pulses for every liter of

flow/second. The code tracks the pulses on the falling edge of a state change from the

sensor using the “interrupt” feature. The interrupt feature will stop the program, add to

the pulseCount function, then return to it’s normal routine whenever a pulse is detected.

It establishes the pin corresponding to the Hall effect output as data pin 2. After the

initializing is complete, the code enters its main loop. Each iteration of the main loop

runs for 1000 milliseconds to ensure timing accuracy. To calculate the flow rate for each

second, the number of pulses are counted then divided by the 0.1 pulses for every liter of

flow/second factor. Therefore, if 2 pulses are counted in one second, the flow rate is 20

liters/second. The flow rate for each second is saved in a variable that is called

currentFlow and that same value is added to the variable totalFlow. The pulse counter is

then reset to zero, so the loop can start again.

	

	

34	

 The packet modem and one of the handheld radios is shown below in Figure 17.

To interface the Arduino with the Kantronics packet modem, the RS-232 shield was

soldered to the Arduino board. Sample Arduino output is shown below in Figure 18,

along with a waveform representation in Figure 19 demonstrating that the level

converting function of the RS-232 shield was operational. A photo of the shielded

Arduino board is shown below in Figure 20.

Figure 17

Figure 18

	

	

35	

Figure 19

Figure 20

	

	

36	

Figure 21

On the display side of the system, a paired radio and modem were used to receive

the signal and decode the packet to extract the desired information. With the data in its

raw form, a PC pulls it in. A script running on the PC displays the data. A block diagram

of the display-side subsystem is shown above in Figure 21.

The program written to take the data from the modem and display it can be found

in the Appendix. The algorithm begins by initializing a program called NCURSES.

Instead of using a small LED display as described in the preliminary proposed,

NCURSES allows for a PC monitor to be utilized and a window to be constructed for

displaying information. The port is defined to tell the computer where to pull information

from, then opened to initialize the flow of information. The baud rate, or rate at which

information is flowing, is set to match the rate of the Kantronics modem. If the baud rates

FSK
Modulating

Radios 	

Kantronics

KPC-3	

C Program

polls
RS-232 port	

Data array
is parsed

and
displayed in
NCURSES

Window	

Packet is
received 	

Data is
decoded and

error-
checked 	

PC receives
data 	

Data is
displayed

on PC
monitor	

	

	

37	

do not match, it is possible that errors will occur in the information exchange process.

Figure 22 below is a snippet of code that includes the command to set the baud rate.

Figure 22

Also shown in Figure 22 above are three commands to print information to the

window. The move command tells the program where to put the text, and the printw

command prints it to the window. The result of these commands can be seen below in

Figure 23.

Figure 23

	

	

38	

Now that the window is configured to display the data, the algorithm enters the

main program loop. This loop will run constantly until the user decides to exit. The

pseudo code for the main program loop is as follows. An empty data array called in_msg

is created to house the data before it is parsed for display. The algorithm will only parse

in_msg when it is the length of a full data message. To determine what constitutes a full

message, the length of the sample output shown in Figure 18 must be considered. When

the total flow is less than 10L, the length of the message is 47. If the total flow is greater

than 10L but less than 100L, the length is 48. If the total flow is greater than 100L, the

message is 49 characters long. The code to handle each of these situations is shown

below in Figure 24.

Figure 24

	

	

39	

With conditions to handle realistic values developed, the parsing can begin. To

parse the information, two new empty arrays were defined. The first, current_flow,

displays the real-time current flow information. The second, total_flow, displays the real-

time totalized flow data. Since each of these values is located at different positions in the

in_msg array, each must be handled separately. The current flow information is located

in positions 11 through 14 in in_msg, strncopy allows for one section of an array to be

copied; therefore indices 11 through 14 are copied to current_flow. After the

information is copied over, a null character is added to the end of current_flow to tell the

computer that the string complete. The parsing of current_flow does not change in any

of the conditions shown above.

As discussed earlier, parsing the totalized flow information does change in each

condition. If the value is less than 10L, only two characters need to be copied to

total_flow to represent the number and the space before it. In Figure 24 above, it is easy

to see how the section parsed in the strncopy command for total_flow changes for each

length condition. Null characters were added to the end of total_flow to signal the end of

the string. After the strings were copied, the move function positioned the cursor to the

desired location on the window. Instead of using the printw function used to print a non-

varying string to the window, addstr was used. After any information was added to the

display window, it needed to be refreshed using the refresh command. The result of this

parsing scheme can be seen below in Figure 25. The screenshot looks similar to Figure

23, but the key data has been extracted from the data sentence shown in Figure 18.

	

	

40	

Figure 25

To exit the main program loop and stop displaying data, the user can enter a “Q”

on the keyboard. Clicking the X in the corner does close the window; but the program

may continue running and can cause some errors. The section of the algorithm that

properly exits the program is shown below in Figure 26. After each iteration of the main

loop, the program checks to see if any characters have been entered from the keyboard. If

there was a character entered, and it was a “Q”, the program closes the connection to the

RS-232 port and exits the window.

	

	

41	

Figure 26

	

	

42	

Performance Results:

Flow Rate Calculation

 It was estimated that flow rate could be calculated accurately with the Arduino

Uno board. The proposed algorithm used a built-in pulse counting function to track the

meter output and calculate a totalized flow rate to be transmitted approximately every 30

minutes. In the final design, a change in hardware required the use of an Arduino Mega

2560 board. Along with substitution, there was a change in the methodology behind

calculating flow rate. Instead of using a pulse counting function, the final prototype

utilized the interrupt feature described above. This feature allowed for the program to

keep track of both current flow and totalized flow. With both of these values now

available, the system became more robust. These two pieces of information were also

sent to the transceiver at a rate of 2-3 times per second. This was crucial in order to attain

real-time data display. Figure 27 below shows the Arduino output every 300ms. One

unanticipated result was the reliability of the connection between the meter and Arduino

board. The thin gauge wires were difficult to deal with, and sometimes resulted in

inaccurate data. To deal with this issue, the ends of the wire were tinned with solder. A

more permanent solution, like wire nuts, is something that will be explored in the future

work.

	

	

43	

Figure 27

Wireless Transmission Protocol

 The proposed design discussed a wireless protocol and estimated that it could

provide error-free communications. The anticipated error-checking method highlighted

the use of parity bits to confirm that the data had been transmitted without errors. The

proposed design also talked about the limitations of this type of protocol, and how real-

time data transfer would not be practical to implement because of processor limitations.

In the final design, the wireless protocol was provided by the Kantronics modems. These

modems used the same error-checking scheme originally proposed to ensure reliable

communications. The biggest difference between the estimated performance and actual

performance regarding data packaging and protocol was the ability to do real-time

information transfer. The Kantronics modems provided the hardware and software

needed to transmit the two outputted variables from the Arduino immediately after

receiving them. The use of the packet modems also allowed for the overall system cost to

decrease, since they were gifted for use in this system.

	

	

44	

Transmitter/Receiver Performance

 The original design called for two low cost transceiver units. The units were at a

fixed frequency and power, which would limit my ability to test different methods of

wireless transmission. Handheld radios were used in the final prototype for more

flexibility in testing the system. The estimated results were that the data would be

transmitted using ASK because of it’s ease of use and anticipated lack of other radio

interference in the region. With the handheld radios I was able to test both ASK and FSK,

as well as a wide range of frequencies in the hundreds of MHz range. From testing, it was

concluded that FSK would be a better choice because of its reliability and resilience. This

addition to the system made it more reliable, and allowed for more thorough testing.

 Before my visit to the site, I did not have a clear picture of the transmission

medium. I proposed that the 2km range of the 433MHz transmitters would have been

sufficient. It actuality, more power was required. The final prototyped design used the

500mW setting on the handheld radios. As part of the future work, programmable radios

will be implemented. When installing the system, I will be able to adjust power levels in

order to attain maximum efficiency.

Information Display

 The proposed design called for a barebones LCD display for testing. The

estimated results regarding the display was that whenever data was received (approx.

30min intervals), the display would should an updated totalized volume of water. The

actual results were significantly better than this estimate. Because of the packet modems

more time was spent developing a display, which could not handle the real-time

	

	

45	

information that was being received. Both the current flow measurement and updated

totalized flow values could be displayed. These values were also updated each time a new

measurement was received (approx. 300ms intervals).

	

	

46	

Production Schedule

Figure 28

Figure 28 above is a graphical illustration of the steps taken to complete this

prototyped system. In ECE 497, most of the time was spent learning how to generate

effective design requirements. The generation of design requirements coincided with

creating a timeline of how things would be accomplished in ECE 498 and 499. While this

was occurring, it was important to research similar projects to understand the

methodology used in their solutions. Many times the applications would be slightly

different than the one desired, but this was useful in determining how to best accomplish

the design requirements. After the design requirements were generated, component

research and comparison began. Based on the knowledge gained from researching current

methods, this process was more precise. During this research phase, software strategies

were examined.

After the hardware and software strategies had been selected, the work on the

system began. On the software side, this means writing pseudo code and generating

	

	

47	

algorithm outlines. For hardware, components were tested individually using test setups.

Once the individual testing was complete, the pieces were connected together and

software was uploaded to the appropriate devices. More stages of testing occurred before

the entire system was tested. Finally, the entire system was tested and debugged. Because

of the unanticipated changes in some hardware components, the original schedule

developed in ECE 497 was not always followed. To improve this, it would have been

valuable to include time in the original schedule for unexpected changes to the overall

system design.

	

	

48	

Cost Analysis

Expenditure Description Cost

EKM 2” Pulse Output Meter $520.00

Kantronics KPC-3 Packet Modem* 2 x $98.00

Arduino Mega 2560 $13.73

LinkSprite RS-232 Shield V2 $11.90

2 inch PVC Piping $8.22

PVC Cement $5.41

Teflon Tape $1.48

PVC Fittings $2.19

PVC Valves $5.41

Total (With Kantronics Modem) $764.34

Total (Without Kantronics Modem) $568.34

Table 3

 The initial proposed budget was $406.24. The final cost was $568.34, 28.5%

higher than proposed. To satisfy my design requirements, a different meter was required.

Without the change in meter included in the analysis, the project cost was actually over

30% under budget.

 The marketability of this system is quite good. A commercially available system

would require the purchase of expensive, closed source software. This software may offer

more features, but the user is typically limited to predetermined settings from the

manufacturer.

	

	

49	

User’s Manual

To operate the prototyped remote metering system, the user must follow a few

simple steps before data is displayed. The first step is to power all of the devices. The

devices that require the user to turn them on are the handheld radios, shielded Arduino

board, packet modems, and the PC on the display side. Next, confirm that the frequency

on both handheld radios is set to 145.05MHz. The dial on top of the handheld radio

allows the user to navigate frequencies. (If this particular frequency is not ideal for the

application, the user may change to any desired as long as it does not violate and

communications laws established by the FCC or comparable entity). On the display side,

the meter output should be connected to the Arduino. To do this, connect the red wire to

pin 2 and the white wire to ground.

The next step is to initialize a connection between the two packet modem links.

To accomplish this, the user should first open up a terminal window and begin a program

called Kermit. A Kermit session is started by navigating to the “home” directory of the

computer and typing “Kermit” into the command line. Kermit is an open source piece of

software used for serial communication devices. Once Kermit is open, the user can then

connect with the device connected to the PC. The command c initializes the connection.

If the computer has not been used to connect with the packet modem beforehand, it may

be necessary to set the baud rate. Typing baud rate 9600 into the command line after

connecting with the device does this. To begin talking with the packet modem located on

the meter side, the user will type c followed by the callsign of the second modem. This

will initialize and call and response protocol between the two modems. Once the devices

are connected, the CONN light on each modem will be solid green. To begin speaking to

	

	

50	

one another, each modem will need to be placed into converse mode. Typing convers in

the command line of Kermit accesses this mode. The meter side modem will

automatically be in converse mode, so no further configuration is required. Before

moving forward, ensure that data is being transmitted from the meter side. If the Arduino

is wired correctly, the user should see flow rate information appearing in the Kermit

window.

To run the script, the user should first close out of the Kermit program. This

requires two commands to be typed by the user: CTRL + \, followed by “quit”. This

closes the connection that Kermit has established with the modem. This step is very

important because the data collection program requires the full attention of the modem. In

the terminal, navigate to the directory that contains the program called getdata. Run the

program by typing, “run getdata.c”. This command should open a new window similar to

the one shown in Figure 25. As soon as the modem on the display side receives any data,

the information will appear on the screen.

Troubleshooting:

• If a connection between modems cannot be established:
o First ensure both modems and radios are powered on
o Check for matching frequencies between radios
o It may be necessary to squelch any noise. To adjust this, use the

secondary nob on top of the radio
• If no data is being displayed:

o Ensure the Arduino is powered properly
o Check that the CONN light is green on both modems
o Confirm that Kermit has been closed properly before running getdata

• If data is erratic:
o Check the connection between the meter output and Arduino
o It may be necessary to tin the ends of the wires user some common

household solder to create a better connection

	

	

51	

Discussion, Future Work, and Conclusions

 Successfully monitoring water remotely in a remote region like Venecia required

a unique, custom solution. The pulse output of the water meter was piped to a shielded

Arduino microcontroller that calculated current flow rates, as well as a totalized value

using a program designed specifically for this application. Wireless data transmission was

accomplished by borrowing hardware that was made popular by amateur radio operators.

Another program was written exclusively for this system to display the data once it had

been received. Tailoring every piece of the system for Venecia may have resulted in more

work, but will provide the community with exactly what they asked for.

 The prototype will undergo more changes in the spring to ensure that it is reliable

and effective for the people of Venecia. Meter side components will have to be

weatherproofed as well as powered. Enclosures exist that provide electronics with the

necessary protection against all types of inclement weather. Providing power to the

components on the meter side will most likely utilize the ample amounts of sunlight at

the metering site. More robust radios will be used instead of the handheld radios

described in this report. The Ritron radios are multi-channel as well as fully

programmable. The ability to add sensors to this system is very important, as discussions

to expand the metering network are underway. Finally, I would like to add some more

features to the display. Trending, and historical data access are two that seem especially

useful.

 By participating in the capstone design project, I was able to expand on the basic

skills I learned in the classroom while at Union. These skills include specifying design

	

	

52	

requirements, selecting components, and constructing an entire system. I was pushed to

make decisions on my own, which is not a comfortable experience initially. Capstone

gave students experience in time management, budgeting, and actual implementation of

our work.

 Although this project was ultimately an engineering project, I feel that I gained

most through my interactions with people in Nicaragua. During my site visit, the

community members welcomed me to Venecia with open arms. I was given the unique

opportunity to interact with the end-users, while simultaneously performing testing that

would help in the final design of the system. Before the visit, I anticipated that the

community members would have a list of specifications and design requirements of their

own. After walking around the community and receiving a tour of their water system, it

was clear that no specific design requirements had been discussed. They had one goal in

mind, and it was to give their families the necessary means to continue living. I returned

to Union with heightened enthusiasm, as well as some anxiety, knowing that most of the

critical design specifications would be left for me. Although learning skills like C

programming and serial communications may come in handy some day, it was these

anxiety-inducing decisions that gave me the most.

 This project would not have been possible without Engineers Without Borders,

the entire ECE department and the support from both of my parents. My advisor,

Professor James Hedrick, was more than just an excellent engineering resource during

this yearlong endeavor. His experience in the social realm of engineering and wealth of

compassion played a larger role in the completion of the project than he will ever admit.

	

	

53	

Work Cited:

A. Chambouleyron, "An Incentive Mechanism for Decentralized Water Metering Decisions,"
Water Resources Management, vol.17, pp. 89-111, 2003.

Hall Effect Output. Digital image. AKM. N.p., n.d. Web. 16 Nov. 2014.
<http://www.akm.com/image/gr-outline-12_1.gif>.

Amplitude Shift Keying(ASK). Digital image. TMAtlantic. N.p., n.d. Web. 15 Nov. 2014.

“Apartment Meters Cut Water Use 15%: Study.” Contractor Magazine 51.10 (2004): 52.
Business Source Premier, Web. 15 Nov. 2014.

Bromehead, C.E. "The Early History of Water-Supply." The Geographic Journal 99.4 (1942):
183-93. JSTOR. Web. 15 Nov. 2014.

C. Lima, "Smart Metering and Systems to Support a Conscious use of Water and Electricity,"
ENERGY, vol 45, pp. 528-540, 2012.

"Checksum Definition." Checksum Is a Simple Method of Detecting Errors in Data. Linux
Information Page, 4 Nov. 2005. Web. 13 Mar. 2015.

"EkoTek Low Power Radio Mesh Networking," EkoTekWeb, <http://www.lotsab.se/wp-
content/uploads/2011/07/Low-Power-Radio-Mesh-Networking.pdf>.

Frequency Shift Keying (FSK). Digital image. TMAtlantic. N.p., n.d. Web. 15 Nov. 2014.

G. Richards, M. Johnson, and S.Barfuss, "Metering Secondary Water in Residential Irrigation
Systems," American Water Works, vol. 100, pp. 112-21, 2008.

H. Mutikanga, S. Sharma, and K. Vairavamoorthy, "Investigating Water Meter Performance in
Developing Countries: A Case Study of Kampala, Uganda," Water S. A., vol. 37, pp. 567-74,
May 2011.

Hall Effect. Digital image. EET. N.p., n.d. Web. 16 Nov. 2014.
<http://m.eet.com/media/1160906/flow_metering_tutorial_2_fig6.jpg>.

Kulkarni, P.; Gormus, S.; Zhong Fan; Motz, B., "A mesh-radio-based solution for smart metering
networks," Communications Magazine, IEEE , vol.50, no.7, pp.86,95, July 2012.

Lundeen, Tim. "Reducing Water Scarcity." Feedstuffs [Chicago] 8 Sept. 2014, 86th ed., sec. 36:
1+. Web. 15 Nov. 2014.

Melosi, Martin V. "Pure and Plentiful: The Development of Modern Waterworks in the United
States, 1801–2000." Water Policy 2.4-5 (2000): 243-65. ScienceDirect. Web. 15 Nov. 2014.

"Metering systems." WaterWorld vol. 44, Web. 8 May 2014.

Postel, Sandra. "Water Scarcity." Environ. Sci. Technol 26.12 (1992): 2332-333. ACS
Publications. Web. 15 Nov. 2014. <http://pubs.acs.org/doi/pdf/10.1021/es00036a600>.

	

	

54	

"RF Propagation Basics," Sputnik, Web. 14 May 2014,
<https://www.sputnik.com/resources/support/deployment/rf_propagation_basics.pdf>.

Sadi, Yalcin; Ergen, Sinem Coleri; Park, Pangun, "Minimum Energy Data Transmission for
Wireless Networked Control Systems," Wireless Communications, IEEE Transactions, vol.13,
no.4, pp.2163,2175, April 2014.

Water Meters: Your Questions Answered: Information for Household Customers. Birmingham:
Ofwat, 2010. OFWAT, 2010. Web. 15 Nov. 2014.

"Water Use: Thirsty Work." The Economist. N.p., 25 Feb. 2009. Web. 15 Nov. 2014.

	

	

55	

Appendix:

Arduino Flow Rate Calculation Code:

1. byte	
 statusLed	
 	
 	
 	
 =	
 13;	
 	
 	
 	
 	

2. 	
 	
 	

3. byte	
 sensorInterrupt	
 =	
 0;	
 	
 //	
 0	
 =	
 digital	
 pin	
 2	
 	
 	
 	

4. byte	
 sensorPin	
 	
 	
 	
 	
 	
 	
 =	
 2;	
 	
 	
 	
 	

5. 	
 	
 	

6. //	
 The	
 hall-­‐

effect	
 flow	
 sensor	
 outputs	
 approximately	
 0.1	
 pulses	
 per	
 second	
 per	
 liter/second	

	
 	
 	

7. float	
 calibrationFactor	
 =	
 0.1;	
 	
 	
 	

8. 	
 	
 	
 	

9. volatile	
 byte	
 pulseCount;	
 	
 	
 	
 	
 	

10. 	
 	
 	
 	

11. float	
 flowRate;	
 	
 	
 	

12. unsigned	
 int	
 flowLiters;	
 	
 	
 	

13. unsigned	
 long	
 totalLiters;	
 	
 	
 	
 	

14. 	
 	
 	

15. unsigned	
 long	
 oldTime;	
 	
 	
 	
 	

16. void	
 setup()	
 	
 	
 	

17. {	
 	
 	
 	
 	
 	
 	
 	
 	

18. 	
 	
 	
 	
 	
 	
 	

19. //	
 Initialize	
 a	
 serial	
 connection	
 for	
 reporting	
 values	
 to	
 the	
 host	
 	
 	
 Serial.begi

n(38400);	
 	
 	
 	
 	
 	
 	
 	
 	
 	

20. //	
 Set	
 up	
 the	
 status	
 LED	
 line	
 as	
 an	
 output	
 	
 	
 	
 	
 	

21. pinMode(statusLed,	
 OUTPUT);	
 	
 	
 	
 	
 	

22. digitalWrite(statusLed,	
 HIGH);	
 	
 //	
 We	
 have	
 an	
 active-­‐low	
 LED	
 attached	
 	
 	
 	
 	
 	
 	
 	
 	

23. pinMode(sensorPin,	
 INPUT);	
 	
 	
 	
 	
 	

24. digitalWrite(sensorPin,	
 HIGH);	
 	
 	
 	
 	
 	
 	

25. pulseCount	
 	
 	
 	
 	
 	
 	
 	
 =	
 0;	
 	
 	
 	
 	
 	

26. flowRate	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 =	
 0.0;	
 	
 	
 	
 	
 	

27. totalLiters	
 	
 =	
 0;	
 	
 	
 	
 	
 	

28. oldTime	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 =	
 0;	
 	
 	
 	
 	
 	

29. 	
 	
 	
 	

30. //	
 The	
 Hall-­‐effect	
 sensor	
 is	
 connected	
 to	
 pin	
 2	
 which	
 uses	
 interrupt	
 0.	
 	
 	
 	
 	
 	

31. //	
 Configured	
 to	
 trigger	
 on	
 a	
 FALLING	
 state	
 change	
 (transition	
 from	
 HIGH	
 state	
 t

o	
 LOW	
 state)	
 	
 	
 	
 	
 	

32. attachInterrupt(sensorInterrupt,	
 pulseCounter,	
 FALLING);	
 	
 	
 	

33. }	
 	
 	

34. 	
 	
 	

35. 	
 	
 	
 	
 	

36. /**	
 	
 	
 	

37. Main	
 program	
 loop	
 	
 	
 	

38. */	
 	
 	
 	

39. void	
 loop()	
 	
 	
 	

40. {	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

41. 	
 	
 	

42. if((millis()	
 -­‐	
 oldTime)	
 >	
 1000)	
 	
 	
 	
 //	
 Only	
 process	
 counters	
 once	
 per	
 second	
 	
 	
 	
 	
 	

43. {	
 	
 	
 	
 	
 	
 	
 	
 	

44. //	
 Disable	
 the	
 interrupt	
 while	
 calculating	
 flow	
 rate	
 and	
 sending	
 the	
 value	
 to	
 	
 	

	
 	
 	
 	
 	

45. //	
 the	
 host	
 	
 	
 	
 	
 	
 	
 	

46. detachInterrupt(sensorInterrupt);	
 	
 	

47. 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	

	

56	

48. //	
 Because	
 this	
 loop	
 may	
 not	
 complete	
 in	
 exactly	
 1	
 second	
 intervals	
 we	
 calculate
	
 	
 	
 	
 	
 	
 	
 	

49. //	
 the	
 number	
 of	
 milliseconds	
 that	
 have	
 passed	
 since	
 the	
 last	
 execution	
 and	
 use	

	
 	
 	
 	
 	
 	
 	

50. //	
 that	
 to	
 scale	
 the	
 output.	
 Also	
 apply	
 the	
 calibrationFactor	
 to	
 scale	
 the	
 outpu
t	
 	
 	
 	
 	
 	
 	
 	

51. //	
 based	
 on	
 the	
 number	
 of	
 pulses	
 per	
 second	
 per	
 units	
 of	
 measure	
 (liters/second	

in	
 this	
 case)	
 coming	
 from	
 the	
 sensor.	
 	
 	
 	
 	
 	
 	
 	

52. flowRate	
 =	
 ((1000.0	
 /	
 (millis()	
 -­‐	
 oldTime))	
 *	
 pulseCount)/	
 calibrationFactor;	
 	
 	

53. 	
 	
 	

54. 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

55. oldTime	
 =	
 millis();	
 	
 	

56. 	
 	
 	

57. 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

58. 	
 	
 	

59. 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

60. //	
 Add	
 the	
 liters	
 passed	
 in	
 this	
 second	
 to	
 the	
 cumulative	
 total	
 	
 	
 	
 	
 totalLiters	

+=	
 flowRate;	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

61. unsigned	
 int	
 frac;	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

62. //	
 Print	
 the	
 flow	
 rate	
 for	
 this	
 second	
 in	
 liters	
 /	
 second	
 	
 	
 	
 	
 Serial.print("Flow

	
 rate:	
 ");	
 	
 	
 	
 	
 	
 	
 	

63. Serial.print(int(flowRate));	
 	
 //	
 Print	
 the	
 integer	
 part	
 of	
 the	
 variable	
 	
 	
 	
 	
 	
 	
 	

64. Serial.print(".");	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 //	
 Print	
 the	
 decimal	
 point	
 	
 	
 	
 	
 	
 	
 	

65. //	
 Determine	
 the	
 fractional	
 part.	
 The	
 10	
 multiplier	
 gives	
 us	
 1	
 decimal	
 place.	
 	
 	

	
 	
 frac	
 =	
 (flowRate	
 -­‐	
 int(flowRate))	
 *	
 10;	
 	
 	

66. 	
 	
 	

67. Serial.print(frac,	
 DEC)	
 ;	
 	
 	
 	
 	
 	
 //	
 Print	
 the	
 fractional	
 part	
 of	
 the	
 variable	
 	
 	
 	
 	

	
 	
 	

68. Serial.print("L/min");	
 	
 	
 	
 	
 //	
 Print	
 the	
 number	
 of	
 liters	
 flowed	
 in	
 this	
 second	
 	

	
 	
 	
 	
 	
 	

69. 	
 	
 	

70. 	
 	
 	
 	
 	
 	
 	
 	

71. //	
 Print	
 the	
 cumulative	
 total	
 of	
 liters	
 flowed	
 since	
 starting	
 	
 	
 	
 	
 Serial.print("

	
 	
 Output	
 Liquid	
 Quantity:	
 ");	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 //	
 Output	
 separator	
 	
 	
 	
 	
 	
 	
 	

72. Serial.print(totalLiters);	
 	
 	
 	
 	
 	
 	
 	

73. Serial.println("L");	
 	
 	
 	
 	

74. 	
 	
 	

75. 	
 	
 	
 	
 	
 	
 	
 	

76. //	
 Reset	
 the	
 pulse	
 counter	
 so	
 we	
 can	
 start	
 incrementing	
 again	
 	
 	
 	
 	
 pulseCount	
 =	
 0

;	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

77. //	
 Enable	
 the	
 interrupt	
 again	
 now	
 that	
 we've	
 finished	
 sending	
 output	
 	
 	
 	
 	
 attachI

nterrupt(sensorInterrupt,	
 pulseCounter,	
 FALLING);	
 	
 	
 	
 	
 	

78. }	
 	
 	

79. 	
 }	
 	
 	
 	
 	

80. /*	
 	
 	

81. Insterrupt	
 Service	
 Routine	
 	
 */	
 void	
 pulseCounter()	
 {	
 	
 	
 //	
 Increment	
 the	
 pulse	
 co

unter	
 	
 	
 pulseCount++;	
 }	
 	
 	

	

	

57	

Data Collection and Display Code:

1. /*	
 	

2. 	
 	
 getdata.c	
 	

3. 	
 	
 J.	
 Wettstein	
 	

4. 	
 	
 02/20/2015	
 	

5. 	
 	
 get	
 flow	
 data	
 from	
 RS232	
 port	
 and	
 display	
 with	
 NCURSES	
 	

6. */	
 	
 	

7. #include	
 <ncurses.h>	
 	
 	

8. #include	
 <termios.h>	
 	
 	

9. #include	
 <unistd.h>	
 	
 	

10. #include	
 <signal.h>	
 	
 	

11. #include	
 <stdlib.h>	
 	
 	

12. #include	
 <stdio.h>	
 	
 	

13. #include	
 <fcntl.h>	
 	
 	

14. #include	
 <string.h>	
 	
 	

15. 	
 	
 	

16. 	
 	
 	

17. #define	
 MESSAGE_LENGTH	
 256	
 	
 	

18. #define	
 PORT_NAME	
 "/dev/ttyS0"	
 	
 	

19. #define	
 TRUE	
 1	
 	
 	

20. #define	
 FALSE	
 0	
 	
 	

21. #define	
 LF	
 0x0A	
 	
 	

22. 	
 	
 	

23. int	
 main()	
 	
 	

24. {	
 	
 	

25. int	
 port;	
 	
 	

26. int	
 portchar;	
 	
 	

27. char	
 char_cnt;	
 	
 	

28. char	
 in_msg[MESSAGE_LENGTH	
 +	
 5];	
 	
 	

29. char	
 current_flow[20];	
 	
 	

30. char	
 total_flow[20];	
 	
 	

31. 	
 char	
 num_str[25];	
 	
 	

32. char	
 in_ch;	
 	
 	

33. int	
 i,	
 ch,	
 lf_flg;	
 	
 	

34. struct	
 termios	
 old_flags,	
 new_flags;	
 	
 	
 	
 	
 	

35. initscr();	
 	
 	

36. start_color();	
 	
 	

37. init_pair(1,	
 COLOR_WHITE,	
 COLOR_BLUE);	
 	
 	

38. wbkgd(stdscr,	
 COLOR_PAIR(1));	
 	
 	

39. 	
 	
 	

40. 	
 	
 	

41. 	
 	
 	

42. 	
 	
 	

43. 	
 	
 	

44. 	
 	
 	
 /*	
 open	
 the	
 RS-­‐1232	
 port	
 */	
 	
 	
 	

45. 	
 	
 	
 if	
 ((port	
 =	
 open(PORT_NAME,	
 O_RDWR	
 |	
 O_NDELAY	
 |O_NOCTTY	
 |	
 O_NONBLOCK	
 	
))	
 ==	
 -­‐

1)	
 	
 	

46. 	
 	
 	
 {	
 	
 	

47. 	
 	
 	
 	
 	
 printw("Error	
 opening	
 RS232	
 port\n");	
 	
 	

48. 	
 	
 	
 	
 	
 refresh();	
 	
 	

49. 	
 	
 	
 	
 	
 exit(-­‐1);	
 	
 	

50. 	
 	
 	
 	
 }	
 	
 	

51. 	
 	
 	

52. 	
 	
 	
 /*	
 set	
 up	
 raw/non-­‐canonical	
 mode	
 */	
 	
 	

53. 	
 	
 	
 tcgetattr(port,	
 &old_flags);	
 	
 	

54. 	
 	
 	
 new_flags	
 =	
 old_flags;	
 	
 	

55. 	
 	
 	
 new_flags.c_lflag	
 &=	
 ~(ECHO	
 |	
 ICANON	
 |	
 ISIG);	
 	
 	

56. 	
 	
 	
 new_flags.c_iflag	
 &=	
 ~(BRKINT	
 |	
 ICRNL	
 	
 |	
 IXOFF	
 |	
 IXANY);	
 	
 	

	

	

58	

57. 	
 	
 	
 new_flags.c_oflag	
 &=	
 ~OPOST;	
 	
 	

58. 	
 	
 	
 new_flags.c_cc[VTIME]	
 =	
 0;	
 	
 	

59. 	
 	
 	
 new_flags.c_cc[VMIN]	
 =	
 1;	
 	
 	

60. 	
 	
 	
 new_flags.c_cflag	
 |=	
 CS8;	
 	
 	

61. 	
 	
 	
 if	
 (tcsetattr(port,	
 TCSANOW,	
 &new_flags)	
 <	
 0)	
 {	
 	
 	

62. 	
 	
 	
 	
 	
 printw("Error	
 seting	
 raw	
 mode!!	
 \n");	
 	
 	

63. 	
 	
 	
 	
 	
 exit(-­‐1);	
 	
 	

64. 	
 	
 	
 	
 	
 endwin();	
 	
 	

65. 	
 	
 	
 }	
 	
 	

66. 	
 	
 	

67. 	
 	
 	
 /*	
 set	
 baud	
 rate	
 */	
 	
 	

68. 	
 	
 	
 cfsetispeed(&new_flags,	
 B9600);	
 	
 	

69. 	
 	
 	

70. 	
 	
 	
 	
 	
 	

71. 	
 	
 	
 move(0,25);	
 	
 	

72. 	
 	
 	
 printw(
 "Welcome!	
 Water	
 metering	
 data	
 can	
 be	
 seen	
 below:\n");	
 	
 	

73. 	
 	
 	
 refresh();	
 	
 	

74. 	
 	
 	
 	
 	

75. 	
 	
 	
 move(5,17);	
 	
 	

76. 	
 	
 	
 printw("Current	
 Flow	
 (Liters/sec):\n");	
 	
 	

77. 	
 	
 	
 refresh();	
 	
 	

78. 	
 	
 	

79. 	
 	
 	
 move(5,64);	
 	
 	

80. 	
 	
 	
 printw("Totalized	
 Flow(Liters):\n");	
 	
 	

81. 	
 	
 	
 refresh();	
 	
 	

82. 	
 	
 	
 	
 	
 	

83. 	
 	
 	
 	
 	

84. 	
 	
 	
 /*	
 set	
 input	
 for	
 non	
 blocking	
 */	
 	
 	

85. 	
 	
 	
 nodelay(stdscr,	
 TRUE);	
 	
 	
 	

86. 	
 	
 	

87. 	
 	
 char_cnt	
 =	
 0;	
 	
 	

88. 	
 	
 lf_flg	
 =	
 FALSE;	
 	
 	
 	

89. 	
 	
 /*	
 receive	
 the	
 data	
 message	
 and	
 print	
 it	
 to	
 the	
 screen	
 */	
 	
 	

90. 	
 	
 for	
 (;;)	
 {	
 	
 	

91. 	
 	
 	
 	
 	
 	
 i	
 =	
 read(port,	
 &portchar,	
 1);	
 	
 	

92. 	
 	
 	
 	
 	
 	
 if	
 (i	
 >	
 0)	
 {	
 //	
 START	
 CHARACTER	
 FOUND	
 AT	
 rs-­‐232	
 PORT	
 	
 	

93. 	
 	
 	

94. 	
 	
 	
 	
 	
 	
 	
 	
 if	
 (
 (((char)portchar	
 >	
 0x1f)	
 &&	
 ((char)portchar	
 <	
 0x7f))	
 ||	
 ((char)port

char	
 ==	
 LF	
)	
){	
 	
 	

95. 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 //	
 if	
 character	
 read	
 is	
 not	
 a	
 LF	
 store	
 in	
 in_msg	
 	
 	

96. 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 if	
 ((char)portchar	
 !=	
 LF){	
 	
 	

97. 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 /*	
 character	
 read	
 from	
 the	
 RS232	
 port	
 is	
 not	
 a	
 Line	
 Feed	
 	

98. 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 so	
 store	
 in	
 the	
 message	
 array	
 */	
 	
 	

99. 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 in_msg[char_cnt]	
 =	
 (char)portchar;	
 	
 	

100. 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 char_cnt++;	
 	
 	

101. 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 /*addch((char)portchar);*/	
 	
 	

102. 	
 	
 	
 	
 	
 	
 	
 	
 //refresh();	
 	
 	

103. 	
 	
 	
 	
 	
 	
 	
 	
 //	
 check	
 to	
 see	
 if	
 there	
 was	
 no	
 second	
 LF	
 	
 	

104. 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 if	
 (lf_flg	
 ==	
 TRUE){	
 	
 	

105. 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 lf_flg	
 =	
 FALSE;	
 	
 	

106. 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 }	
 	
 	

107. 	
 	
 	
 	
 	
 	
 }else	
 {	
 //	
 start	
 handle	
 LF	
 	
 	

108. 	
 	
 	
 	
 	
 	
 	
 	
 //	
 line	
 feed	
 found	
 replace	
 with	
 NULL	
 and	
 zero	
 char	
 count	
 	
 	

109. 	
 	
 	
 	
 	
 	
 	
 	
 /*	
 hanhdle	
 line	
 feed.	
 If	
 the	
 first	
 one	
 set	
 falg	
 and	
 check	
 to	
 see

	
 	
 	

110. 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 if	
 the	
 next	
 character	
 is	
 also	
 a	
 line	
 feed	
 */	
 	
 	

111. 	
 	
 	
 	
 	
 	
 	
 	
 if	
 (lf_flg	
 ==	
 FALSE){	
 	
 	
 //	
 start	
 first	
 LF	
 	
 	

112. 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 in_msg[char_cnt]	
 =	
 0x00;	
 	
 	

113. 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 lf_flg	
 =	
 TRUE;	
 	
 	

114. 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 char_cnt	
 =	
 0;	
 	
 	
 	
 	

115. 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	

	

59	

116. 	
 	
 	
 	
 	
 	
 	
 	
 }	
 else	
 {	
 //	
 handle	
 second	
 LF	
 	
 	

117. 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 //ignore	
 second	
 LF	
 	
 	

118. 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 }	
 	
 	

119. 	
 	
 	
 	
 	
 	
 }//	
 end	
 of	
 hanlde	
 LF	
 	
 	

120. 	
 	
 	

121. 	
 	
 	

122. //	
 parse	
 message	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

123. 	
 	
 	
 	
 	
 	
 	
 	
 //refresh();	
 	
 	

124. 	
 	
 	
 	
 	
 	
 	
 	
 	
 if	
 (strlen(in_msg)	
 ==	
 47){	
 	
 	

125. 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

126. 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 strncpy(current_flow,	
 &in_msg[11],	
 3);	
 	
 	

127. 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 current_flow[3]	
 =	
 0x00;	
 	
 	

128. 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 move(6,28);	
 	
 	

129. 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 addstr(current_flow);	
 	
 	

130. 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 //	
 refresh();	
 	
 	

131. 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

132. 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 move(6,73);	
 	
 	

133. 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 strncpy(total_flow,	
 &in_msg[44],	
 2);	
 	
 	

134. 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 total_flow[2]	
 =	
 0x00;	
 	
 	

135. 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 addstr(total_flow);	
 	
 	

136. 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 refresh();	
 	
 	

137. 	
 	
 	
 	
 	
 	
 	
 	
 	
 }	
 	
 	

138. 	
 	
 	
 	
 	
 	
 	
 	
 	
 if	
 (strlen(in_msg)	
 ==	
 48){	
 	
 	

139. 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

140. 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 strncpy(current_flow,	
 &in_msg[11],	
 3);	
 	
 	

141. 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 current_flow[3]	
 =	
 0x00;	
 	
 	

142. 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 move(6,28);	
 	
 	

143. 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 addstr(current_flow);	
 	
 	

144. 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 //refresh();	
 	
 	

145. 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 move(6,73);	
 	
 	

146. 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 strncpy(total_flow,	
 &in_msg[44],	
 3);	
 	
 	

147. 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 total_flow[3]	
 =	
 0x00;	
 	
 	

148. 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 addstr(total_flow);	
 	
 	

149. 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 refresh();	
 	
 	

150. 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 }	
 	
 	

151. 	
 	
 	
 	
 	
 	
 	
 	
 	
 if	
 (strlen(in_msg)	
 ==	
 49){	
 	
 	

152. 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

153. 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 strncpy(current_flow,	
 &in_msg[11],	
 3);	
 	
 	

154. 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 current_flow[3]	
 =	
 0x00;	
 	
 	

155. 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 move(6,28);	
 	
 	

156. 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 addstr(current_flow);	
 	
 	

157. 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 refresh();	
 	
 	

158. 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

159. 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 move(6,73);	
 	
 	

160. 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 strncpy(total_flow,	
 &in_msg[44],	
 4);	
 	
 	

161. 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 total_flow[4]	
 =	
 0x00;	
 	
 	

162. 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 addstr(total_flow);	
 	
 	

163. 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 refresh();	
 	
 	

164. 	
 	
 	
 	
 	
 	
 	
 	
 	
 }	
 	
 	

165. 	
 	
 	

166. 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

167. 	
 	
 	

168. 	
 	
 	
 	
 	
 	
 /*	
 addch((char)portchar);*/	
 	
 	

169. 	
 	
 	
 	
 }else{	
 	
 	

170. 	
 	
 	
 	
 	
 	
 //	
 addch('.');	
 	
 	

171. 	
 	
 	
 	
 	
 	
 	
 	
 }	
 	
 	

172. 	
 	
 	
 	
 	
 	
 	
 	
 //refresh();	
 	
 	

173. 	
 	
 	

174. 	
 	
 }	
 //	
 END	
 OF	
 CHARACTER	
 FOUND	
 FROM	
 rs-­‐232	
 	
 	
 	

175. 	
 	
 	

176. 	
 	
 //	
 check	
 keyboard	
 	
 	

	

	

60	

177. 	
 	
 	
 	
 	
 	
 /*	
 get	
 a	
 character	
 from	
 the	
 keyboard	
 */	
 	
 	

178. 	
 	
 	
 	
 	
 	
 ch	
 =	
 getch();	
 	
 	

179. 	
 	
 	
 if	
 (ch	
 !=	
 ERR){	
 	
 	

180. 	
 	
 	
 	
 	
 	
 	
 	
 printf("%c	
 ",	
 ch);	
 	
 	

181. 	
 	
 	
 	
 }	
 	
 	

182. 	
 	
 	
 	
 if	
 (ch	
 ==	
 'Q')	
 {	
 	
 	

183. 	
 	
 	
 	
 	
 	
 	
 	
 	

184. 	
 	
 	
 	
 	
 	
 /*	
 tcsetattr(port,	
 TCSANOW,	
 &old_flags);*/	
 	
 	

185. 	
 	
 	
 	
 	
 	
 close(port);	
 	
 	

186. 	
 	
 	
 	
 	
 	
 endwin();	
 	
 	

187. 	
 	
 	
 	
 	
 	
 return(0);	
 	
 	

188. 	
 	
 	
 	
 }	
 	
 	

189. 	
 	
 	
 	
 	
 	
 	
 	
 	

190. 	
 	
 	
 	
 	
 	

191. 	
 	
 	
 	

192. }	
 //	
 end	
 forever	
 	
 	
 	

193. 	
 	
 	
 	

194. 	
 	
 /*	
 reset	
 original	
 port	
 settings	
 and	
 close	
 port	
 */	
 	
 	

195. 	
 	
 	
 	

196. }	
 //	
 end	
 main	
 	
 	
 	
 	
 	

