Category Archives: Tensegrity

Tensegrity Robot

Tensegrity’s Next Step: Detecting Direction

One of the current major limitations of the tensegrity is that it does its distance calculations using only a start position and an end position. Although that does lead to some very useful results, the data is crude and has its limitations. For example, at the moment there is no way for our evolutionary algorithms to evolve for turning. This is because we can only tell changes in position, not changes in directions. To solve this problem, we will begin implementing calculating direction of the tensegrity.

Continue reading Tensegrity’s Next Step: Detecting Direction

Tensegrities in Bullet Physics

What are tensegrities?

Tensegrities are structures which are very lightweight and have very strong structural properties. They are created by connecting rigid bars with tensile elements. Below is an example of a standard 3-bar tensegrity with the green being rigid bars and the red representing some tensile element. In the real world, this could be something like rods of hard plastic connected by rubber bands or springs.

Because tensegrities are connected by tensile elements, they have some interesting properties. Tensegrities are stable by definition but they can wobble and resonate, which is the property that Union’s physical tensegrity is examining most closely. They can also be deformed by shortening and lengthening their tensile elements. Real world tensegrity robots have been made such that the tensile elements can change their lengths to move, so this has been proven to work. Continue reading Tensegrities in Bullet Physics