The Impact of Livestock on Climate Change

Spurned by our brief discussion on the impact cows and methane have on the climate, I wanted to learn a little bit more about their impact.  I came across an article on “time for change” that elaborates on the issue.   The big talking point of the article for me was the fact that “agriculture is responsible for 18% of the total release of greenhouse gases world-wide.”  This is a big number, and I never realized the scale of the impact livestock had on greenhouse emissions.  This is a tricky subject, as humans are unlikely to decrease their meat consumption, and cows are used for other products such as milk as well.  As the population of the world goes up, this number is likely to increase, as a larger population means there is a larger demand livestock.

The article explains that “global meat production is expected to double from 229 million tons to 580 million tons in 2050.”  Furthermore “a kg of beef is responsible for the equivalent of the amount emitted by a European car for 250 km.” They put forth a table that breaks down where the CO2 comes from.  The message of the article: humans need to consume less meat and dairy in order to lower these numbers and the impact of climate change.

Agriculture and Climate Change

Agriculture has been the main means of survival for humans for centuries. The age of hunter-gatherers is ancient history. Societies all over the globe have been built and destroyed over the resources that are yielded due to the development of agriculture and agricultural technology. Because agriculture involves utilizing a small area relative to the number of crops grown or livestock raised on it, it means that farmers and ranchers are able to produce a high volume of what they are producing in a concentrated area. However, the world has been facing an agricultural crisis in the last millennium due to exponential population growth and a vast reduction in arable farmland. This means that the demand for milk, eggs, crops, meat, etc.. is rising, but the area in which these resources are produced is shrinking. The United Nations Department of Economic and Social affairs reported a projection that the world population will reach 9.7 billion people by the year 2050. But what does that mean for the future of agriculture? Well, modern scientists have already started to come up with solutions to these issues; many of which may sound familiar. Factory farming, genetically modified foods, pesticides and artificial growth hormone and antibiotic cocktails for animals are only a few ways that agriculture has been permeated by modern technology. Unfortunately, many of these technological ‘advances’ have been catastrophic for the earth. Factory farms produce incredible amounts of CO2 and CH4 and they pollute soil, ground water and air quality. The sick animals that they raise on artificial hormones and antibiotics are then fed to humans which makes us, by default, sicker as well. The plants, such as soybeans, produced by companies like Monsanto, are so altered and sprayed with chemicals that they are de facto stripped of their nutritional value.

In the same UN/DESA study, it is projected that the yield of staple grains like wheat and corn will decrease by 50% due to the effects of global warming. Imagine that: 35 years from now, we will probably have only half the number of grains and corn that we have now because of climate change. Less arable land means fewer farms, which leads to higher prices and lower production. Agriculture, and the deforestation that is needed to create farmland, is responsible for 1/5th or 21% of all CO2 emissions in the world, between 2000 and 2010. The total estimate of CO2 emissions from agriculture in this decade was approximately 44 billion metric tonnes. Anthropic climate change is killing agriculture, but the deforestation and greenhouse gas emissions from farms is one of the single largest causes of climate change in the world. So is agriculture good or bad? The simple answer is both or neither, whichever way you choose to look at it.

You can read the whole article here.

The Effects of Increasing levels of Carbon Dioxide

Kevin Loria’s article on the rise in Carbon Dioxide levels mentions that, for the first time in more than 800,000 years, the monthly average atmospheric carbon dioxide levels have topped 410 ppm. Providing a strong reason to believe this will have adverse effects on human health. This rise in CO2 levels will increase levels of pollution and the diseased related to it, as well as extreme weather patterns. These patterns would include heat waves, hurricanes, and spread the ranges of disease-carrying insects. Loria mentions that although the rise in Carbon Dioxide levels won’t have direct effects on our ability to breathe, but will “dramatically increase pollution and related diseases, potentially slow human cognition, cause extreme weather events (including deadly heat waves), and broaden the range of disease-carrying creatures like mosquitos and ticks.”

A study published in 2017 in the journal Nature Climate Change found that “30% of the world is already exposed to heat intense enough to kill twenty or more people each day.” This rise in atmospheric temperature may cause many more people to die every year and if temperatures continue to increase the numbers will multiply. This rise in temperature will also lead to a more intense hurricane season with rising water levels and warmer ocean temperatures. Along with extreme heatwaves, CO2 will destroy the ozone, which can lead to death through respiratory illness, asthma, and emphysema. Along with increasing rates of lung cancer, allergies, and cardiovascular disease. Insects along with their deadly diseases will spread to the warmer regions, who would typically die out during colder seasons would stay longer, and their habitats would expand further.

The effects of this rise in CO2 are already showing up, and without an answer, we will begin to see more and more severe consequences for our actions. The answers are more than just cutting back on CO2; this becomes a worldwide problem and not just a domestic issue.

Irreversible Climate Change

In her article, “Irreversible climate change due to carbon dioxide emissions,” Susan Solomon and her colleagues express how the human race has such a large impact on the world’s climate change. The paper focuses on how the effects of increases in carbon dioxide on the atmosphere take around a thousand years to be repaired. Human activities were identified as the most prominent cause of the rise in “atmospheric concentrations of key greenhouse gases.” These increases in greenhouse gases, especially carbon dioxide, will result in a wider range of damaging and possibly irreversible climate changes.

Solomon highlights how complicated the multi-step process of carbon dioxide atmospheric extraction can be. The process includes “rapid exchange with the land biosphere and the surface layer of the ocean through air-sea exchange.” Typically, 20% of the added tonnes of carbon dioxide stay in the atmosphere while 80% becomes mixed in with the ocean. Ocean warming is just one quantifiable aspect of climate change. Unlike methane or nitrous oxide, carbon dioxide is the only greenhouse gas whose gases persist over time rather than periodic instances. The graphs below display the amount of carbon dioxide that is “expected to be retained in the atmosphere by the end of the millennium.”

These three graphs display carbon dioxide and global mean climate system changes. Results are represented with an 11-yr running mean.

Overall, the main point of Solomon’s article was to highlight how irreversible these small but detrimental gas emissions can be to our climate. Changes in sea levels, changes in precipitation, and changes in atmospheric warming can all be traced back to the increase in CO2 emissions into the atmosphere. Not only are these changes dangerous to the environment, but also play a vital role in the timeline of mankind.

Atmospheric Carbon Dioxide Increases

In reading an article from the Scientific American, I have learned that for the past five years, Carbon Dioxide levels in the atmosphere have increased at a rate of at least 2 parts per million, which is an “all time high” according to author Scott Waldman. The National Oceanic and Atmospheric Administration has been keeping a close watch on increasing Carbon Dioxide atmospheric levels due to the intense environmental threat increases in CO2 levels pose. Pieter Tans is a lead scientist at the NOAA’s Global Greenhouse Gas Reference Network, and he is especially concerned at the rate of the increases of CO2 in our atmosphere, “The rate of CO2 growth over the last decade is 100 to 200 times faster than what the Earth experienced during the transition from the last ice age,” Tans said. “This is a real shock to the atmosphere” (Waldman 2017). Why the concern? High levels of Carbon Dioxide in the atmosphere can cause sea levels to rise, increase the existence of droughts, extreme weather including hurricanes, blizzards, and more. Outside of this article, I see my own concerns for rising CO2 levels in our atmosphere. A direct impact on all living things on this planet by the extreme weather is our ability to grow food. As the environment changes and becomes more hostile, it is also much more difficult for agricultural endeavors to thrive. This will end up causing food shortages and disastrous effects on all living creatures as well as the economy. Action must be taken to reduce Carbon Dioxide emissions and Carbon Dioxide levels in the atmosphere so that life can continue to thrive on Earth.

Link to article here.

 

Measuring Carbon Dioxide

The amount of carbon dioxide in earth’s atmosphere is significantly increasing due to human activity and a lack of environmental friendly practices used by the public. According to NASA, one third of the carbon dioxide released into the air is dissolved into the ocean, which can threaten the livelihood of the marine ecosystem. Half of the carbon dioxide remains in the air. It is unknown where the remaining carbon dioxide goes, so to track the amount of carbon dioxide and its location, NASA has developed an earth orbiting satellite called OCO-2.

This new satellite will track and measure the carbon cycle and provide information as to where the remaining carbon dioxide will end up. During the ice ages, carbon dioxide levels were around 200 parts per million (ppm), or .2 g/L, and increased to 400 ppm, or .4 g/L, in 2013. It is important to know this information and be able to measure the amount of carbon dioxide in the atmosphere so we can better prepare for changes in the environment. For example, an increased amount of carbon dioxide may cause extreme natural disasters and negatively impact food sources and animals. NASA’s new satellite will help to not only measure the amount of carbon dioxide in the atmosphere, but it will also keep scientists informed about what to expect in the future regarding where the carbon dioxide will be absorbed and how this may impact the planet over time.

Progress & Natural Resources

Today we live in large industrial world that depends heavily on the extraction of natural resources and its mass consumption. Through technological development, nations can thrive in the economic field when exporting natural resources but there are negative factors that hurt the atmosphere. In the U.S. 60% of americas live in high polluted areas, with rising high levels of natural resource consumptions. The levels of pollution in the world is rising and the U.S. is in the middle of the development.

In the reading by the Union of Concerned  Scientists, concluded that every 10,000 U.S. homes powered with with natural gas instead of coal avoids the annual emissions of 1,900 tons of NOx, 3,900 tons of SO2, and 5,200 tons of particulates. There are renewable energy that is present and can be used by governments and private industries, but the business aspects of natural resources creates a challenge switching energy consumptions methods.

The removal of natural resources from the environment often creates bad living conditions for locals to to make a living. Many countries in Latin America are suffering from the exploitation from corporations that remove the natural resources without concern for the negative effects. Latin America is responsible for 974.6 million metric tons of CO2 emissions from fuel combustion, with high rates in the manufacturing, and transporting sectors. They are responsible for a large factor of the rise in pollution because of the exploitation of the natural resources.

Countries like Brazil that are abundant in nature resources tends to have high rates of air pollution due to its industrialization. The cost of air pollution to the health sector is estimated to be more than $670 million and causes more than 4,000 premature deaths each year. The negative effects of pollution are continually increasing but the solution is alternative energies, which are slowly being implemented into society.

Carbon Dioxide from Deforestation

An article from the Union of Concerned Scientists explains how we measure the amount of CO2 from deforestation in our atmosphere. The study concludes that deforestation contributes to around 3 billion tons of carbon dioxide in our atmosphere per year; that is, about 10% of all CO2 emissions.

Simplifying these numbers and their units to a more easily understandable human term is extremely helpful in cases such as this. Explaining that 3 billion tons of carbon dioxide is different from 3 billion tons of bricks is essential in this understanding. So just how big (or small) is 3 billion tons of CO2, and how would we find out?

We can start by using the unit factor method to compute this number into human terms. For instance, we could express 3 billion tons of CO2 as the equivalent of 13 million railroad cars, stretching around 125,000 miles or half way to the moon. By using a familiar term such as the size of a piece of land or animal, we get to see a big number from a different perspective. That being said, the total amount of CO2 from deforestation is equivalent to the total emissions from all of Western Europe combined.

Finally, the article takes into consideration the approximation and estimations that we read about in the textbook this week. The author described two approaches that one might take to compute these numbers. In one approach they explain using the most certain and comparable numbers, focusing on specific dates and measuring only one thing (CO2). The next approach brings in other aspects with complete and up-to-date information, calculating all possible variables creating a more substantial result.

There are many different ways and units to measure numbers with. In this specific case, all calculations came out to around the same conclusion: 10% of all CO2 emissions are from deforestation itself, or the equivalent of 600 million cars (twice as many than there are in the entire US).

 

Atmospheric Carbon Dioxide’s Effect on Marine Life

Atmospheric Carbon Dioxide rates are now higher than at any point in the last 800,000 years. According to a study conducted by the National Oceanic Atmospheric Administration, CO2 concentration in Earth’s atmosphere has not been this high since Earth’s average temperature ranged from 2-3 degrees Celsius, which is equivalent to 3.6-5.4 degrees Fahrenheit. Because Carbon Dioxide is a gas that absorbs heat, it also releases this heat gradually over time. As more fossil fuels, such as coal and oil, are burned annually for energy, the CO2 is being released at a higher rate, thus heating up the earth more quickly, and contributing to climate change. The NOAA predicts that this increase in atmospheric CO2 is likely responsible for two-thirds of the total energy imbalance that is causing Earth’s temperature to rise.

Throughout the NOAA’s report, they explained how Carbon Dioxide plays an interesting role in Earth’s system because it dissolves into the ocean. When CO2 reacts with these molecules of water, it produces Carbonic Acid, which lowers the ocean’s pH. Since the beginning of the Industrial Revolution, the ocean’s pH has shifted from 8.21 to 8.10. This ocean acidification drop of approximately 0.1 is extremely vital in the survival of marine life. This very small change in pH creates a 30 percent increase of acidity to the ocean.

Ocean acidification goes into the idea of measurements we had previously discussed in class. Looking from an outside perspective, without knowing the consequences, we would assume that a 0.1 acidity increase is virtually nothing. However, it’s effect is more detrimental than we think.  The 30 percent acidity increase makes it more difficult for marine life to extract calcium from the water to build their shells and skeletons. Therefore, through our study of scales and measurements, the context of each situation is extremely important when analyzing sustainability issues.

 

 

Source: Climate Change: Atmospheric Carbon Dioxide